******************* Cán bộ nghiên cứu

Tạ Thị Hoài An


GS. TSKH. NCVCC

Phòng Đại số và Lý thuyết số
Hướng nghiên cứu: Algebraic Number Theory, Nevanlinna Theory, Algebraic geometry


Liên hệ
Phòng làm việc: Phòng 307, Nhà A5
Điện thoại: +84 024 37563474 (ext. 154)
Email: tthan AT math.ac.vn

Lý lịch khoa học

  • Đại học: năm 1993, Đại học Vinh, Việt Nam
  • Tiến sĩ: năm 2001
  • Tiến sĩ khoa học: năm 2014, Đại học Blaise Pascal, Clermont-Ferrand, Cộng hòa Pháp
  • Chuyên ngành: Đại số-Lý thuyết số
  • Phó giáo sư: năm phong 2009
  • Giáo sư: 2023

Các lĩnh vực quan tâm: Algebraic Number Theory, Nevanlinna Theory, Algebraic geometry

DANH SÁCH CÔNG TRÌNH

Danh sách trong Mathscinet

Danh sách gần đây
1Tạ Thị Hoài An, William Cherry, Nguyen Viet Phuong, A non-Archimedean second main theorem for hypersurfaces in subgeneral position, Proceedings of the American Mathematical Society, 153 (2025), 3395-3402, (SCI-E, Scopus).
2Nguyen Viet Phuong , Tạ Thị Hoài An, Defect relations for holomorphic curves of finite lower order intersecting hypersurfaces, Journal of Mathematical Analysis and Applications Volume 544, Issue 2, 15 April 2025, 129086, (SCI-E, Scopus).
3Tạ Thị Hoài An, Nguyen Viet Phuong, A Non-Archimedean Second Main Theorem for Small Functions and Applications, Taiwanese Journal of Mathematics, 27 (2023), 913-929, (SCI-E, Scopus).
4Tạ Thị Hoài An, Nguyen Viet Phuong , A lemma about meromorphic functions sharing a small function. Computational Methods and Function Theory 22 (2022), no. 2, 277–286, (SCI-E, Scopus).
5Tạ Thị Hoài An, Nguyen Viet Phuong, Zeros of Differential Polynomials of Meromorphic Functions, Acta Mathematica Vietnamica, 47 (2022), pages 211–221, (Scopus).
6Tạ Thị Hoài An, Nguyễn Việt Phương, A note on Hayman’s conjecture, International Journal of MathematicsVol. 31, No. 06, 2050048 (2020), (SCI-E), Scopus.
7Alain Escassut, Tạ Thị Hoài An, Classical p-adic Nevanlinna theory and Nevalinna theory out of a hole. [Corrected title: Classical p-adic Nevanlinna theory and Nevanlinna theory out of a hole] Advances in ultrametric analysis, 161–203, Contemp. Math., 704, Amer. Math. Soc., Providence, RI, 2018.
8Alain Escassut, Tạ Thị Hoài An, New applications of the $p$-adic Nevanlinna theory p-Adic Numbers Ultrametric, p-Adic Numbers, Ultrametric Analysis and Applications, 10 (2018), 12–31.
9Tạ Thị Hoài An, Nguyen Viet Phuong, Uniqueness theorems for differential polynomials sharing a small function. Computational Methods and Function Theory, 17 (2017), 613–634, SCI(-E); Scopus.
10Alain Escassut, Tạ Thị Hoài An, P-Adic Nevanlinna Theory Outside of a Hole, Vietnam Journal of Mathematics, 45 (2017), 681–694, (Scopus).
11Thomas Hales, Mark Adams, Gertrud Bauer, Tat Dat Dang, John Harrison, Hoàng Lê Trường, Cezary Kaliszyk, Victor Magron, Sean Mclaughlin, Nguyễn Tất Thắng, Quang Truong Nguyen, Tobias Nipkow, Steven Obua, Joseph Pleso, Jason Rute, Alexey Solovyev, Tạ Thị Hoài An, Trần Nam Trung, Thi Diep Trieu, Josef Urban, Ky Vu, Roland Zumkeller, A formal proof of the Kepler onjecture, Forum of Mathematics, Pi, 5 (2017) 29 pages.
12Tạ Thị Hoài An, Cherry William, Wang Julie Tzu-Yueh, Supplement and Erratum to "Algebraic degeneracy of non-Archimedean analytic maps'' [Indagationes Mathematicae (N.S.) 19 (2008) 481–492] , Indagationes Mathematicae (N.S.) 26 (2015), 329–336,SCI(-E); Scopus.
13Tạ Thị Hoài An, Nguyen Thi Ngoc Diep, Genus one factors of curves defined by separated variable polynomials, Journal of Number Theory, 133 (2013), 2616-2634, SCI(-E); Scopus.
14Tạ Thị Hoài An, Hsiu-Lien Huang and J. T.-Y. Wang, Generalized B\"uchi's  problem for algebraic functions and meromorphic functions,  Mathematische Zeitschrift 273 (2013), 95-122, SCI(-E); Scopus.
15Tạ Thị Hoài An, Nguyen Thi Ngoc Diep, Heights of Function Field Points on Curves Given by Equations with Separated Variables,  International Journal of Mathematics,23 (2012), SCI(-E); Scopus.
16Tạ Thị Hoài An, William Cherry, Preface [Special issue dedicated to Professor Hà Huy Khoái on the occasion of his 65th birthday], Vietnam J. Math. 39 (2011), no. 3, v--vii.
17Tạ Thị Hoài An, J. T.-Y. Wang, Hensley's problem for complex and non-Archimedean meromorphic functions, Journal of Mathematical Analysis and Applications 381(2011), 661 -- 677, SCI(-E); Scopus.
18Tạ Thị Hoài An, A. Levin and J. T.-Y. Wang, A $p$-adic Nevanlinna-Diophantine correspondence, Acta Arithmetica 146 (2011), 379 -- 397, SCI(-E); Scopus.
19Tạ Thị Hoài An, Unique range sets for meromorphic functions constructed without an injectivity hypothesis, Taiwanese Journal of Mathematics, 15 (2011), 697 -- 709, SCI(-E); Scopus.
20Tạ Thị Hoài An, Julie Tzu-Yueh Wang, A note on uniqueness polynomials of entire functions, Vietnam J. Math. 37 (2009), 225-236.
21Tạ Thị Hoài An, Ha Tran Phuong, On an explicit estimate on multiplicity truncation in the second main theorem for holomorphic curves encountering hypersurfaces in general position in projective space, Houston Journal of Mathematics, 35 (2009), 775-786.
22Hà Huy Khoái, Tạ Thị Hoài An, A survey on uniqueness polynomials and unique range sets. In: Some topics on value distribution and differentiability in complex and p-adic analysis.,143-163; Math. Monogr. Ser., 11, Sci. Press Beijing, 20008.
23Tạ Thị Hoài An, Hà Huy Khoái, Uniqueness polynomials and unique range sets. Some topics on value distribution and differentiability in complex and p-adic analysis, 148–163, Math. Monogr. Ser., 11, Sci. Press Beijing, Beijing, 2008.
24Tạ Thị Hoài An, A. Escassut, Meromorphic solutions of equations over non-Archimedean fields, Ramanujan J. 15 (2008),  N0 3, 415 - 433.
25Tạ Thị Hoài An, J. T.-Y. Wang and P.-M. Wong, Non-Archimedean analytic curves in the complements of hypersurface divisors. J. Number Theory 128 (2008), 2275 - 2281.
26Tạ Thị Hoài An, W. Cherry and J.T.-Y. Wang, Algebraic degeneracy of non-archimedean analytic maps, Indagationes Math. 19 (2008), 481-492, preprint arXiv:0708.0401.
27Tạ Thị Hoài An, Wang, Julie Tzu-Yueh, An effective Schmidt's subspace theorem for non-linear forms over function fields. Journal of Number Theory 125 (2007), no. 1, 210--228, (SCI(-E), Scopus).
28Tạ Thị Hoài An, J. T.-Y. Wang, Unique range sets and uniqueness polynomials for algebraic curves, Trans. Amer. Math. Soc. 359 (2007),  937 - 964(electronic).
29Tạ Thị Hoài An, A defect relation for non-Archimedean analytic curves in arbitrary projective varieties, Proc. Amer. Math. Soc. 135 (2007),  1255 - 1261.
30Tạ Thị Hoài An, J. T.-Y. Wang, An effective Schmidt's subspace theorem for non-linear forms over function fields, J. Number Theory 125 (2007),  210 - 228.
31Tạ Thị Hoài An, Julie Tzu-Yueh Wang, Pit-Mann Wong, Unique range sets and uniqueness polynomials in positive characteristic. II. Acta Arith. 116 (2005), N0 2, 115 - 143.
32Tạ Thị Hoài An, J. T.-Y. Wang, Unique range sets for non-Archimedean entire functions in positive characteristic fields. In: Ultrametric functional analysis, 323 - 333, Contemp. Math. 384, Amer. Math. Soc., Providence, RI, 2005.
33Tạ Thị Hoài An, J. T.-Y. Wang and P.-M. Wong, Strong uniqueness polynomials: the complex case, Complex Var. Theory Appl. 49 (2004), 25 - 54.
34Tạ Thị Hoài An, Julie Tzu-Yueh Wang, Pit-Mann Wong, Unique range sets and uniqueness polynomials in positive characteristic. Acta Arith. 109 (2003), 259 - 280
35Hà Huy Khoái, Tạ Thị Hoài An, Uniqueness problem with truncated multiplicities for meromorphic functions on a non-Archimedean field, Southeast Asian Bull. Math. 27 (2003), 477 - 486.
36Tạ Thị Hoài An, J. T.-Y. Wang, Uniqueness polynomials for complex meromorphic functions. Internat, J. Math. 13 (2002), 1095 - 1115.
37Tạ Thị Hoài An, A new class of unique range sets for meromorphic functions on $\Bbb C$. Dedicated to the memory of Le Van Thiem (Hanoi, 1998), Acta Math. Vietnam. 27 (2002),  251 - 256.
38Hà Huy Khoái, Tạ Thị Hoài An, On uniqueness polynomials and bi-URs for $p$-adic meromorphic functions, J. Number Theory 87 (2001),  N0 2, 211 - 221.
Tiền ấn phẩm
1IMH20230605, Tạ Thị Hoài An, Ngo Quoc Hoan, Polylogarithm functions via Nevallinna theory
2IMH20239604, Tạ Thị Hoài An, Ngo Quoc Hoan, Multiple Eulerian polynomials
3IMH20221205, Tạ Thị Hoài An, Nguyen Viet Phuong, Quasi-normal family of meromorphic functions