Tạ Thị Hoài An
GS. TSKH. NCVCC
Phòng Lý thuyết số
|
Liên hệ
Phòng làm việc: Phòng 307, Nhà A5
Điện thoại: +84 024 37563474 (ext. 154)
Email: tthan AT math.ac.vn
Lý lịch khoa học
- Đại học: năm 1993, Đại học Vinh, Việt Nam
- Tiến sĩ: năm 2001
- Tiến sĩ khoa học: năm 2014, Đại học Blaise Pascal, Clermont-Ferrand, Cộng hòa Pháp
- Chuyên ngành: Đại số-Lý thuyết số
- Phó giáo sư: năm phong 2009
- Giáo sư: 2023
Các lĩnh vực quan tâm: Algebraic Number Theory, Nevanlinna Theory, Algebraic geometry
DANH SÁCH CÔNG TRÌNH
Danh sách trong Mathscinet
Danh sách gần đây1 | Tạ Thị Hoài An, Nguyen Viet Phuong, A Non-Archimedean Second Main Theorem for Small Functions and Applications, Taiwanese Journal of Mathematics, 27 (2023), 913-929, (SCI-E, Scopus). |
2 | Tạ Thị Hoài An, Nguyen Viet Phuong , A lemma about meromorphic functions sharing a small function. Computational Methods and Function Theory 22 (2022), no. 2, 277–286, (SCI-E, Scopus). |
3 | Tạ Thị Hoài An, Nguyen Viet Phuong, Zeros of Differential Polynomials of Meromorphic Functions, Acta Mathematica Vietnamica, 47 (2022), pages 211–221, (Scopus). |
4 | Tạ Thị Hoài An, Nguyễn Việt Phương, A note on Hayman’s conjecture, International Journal of MathematicsVol. 31, No. 06, 2050048 (2020), (SCI-E), Scopus. |
5 | Alain Escassut, Tạ Thị Hoài An, Classical p-adic Nevanlinna theory and Nevalinna theory out of a hole. [Corrected title: Classical p-adic Nevanlinna theory and Nevanlinna theory out of a hole] Advances in ultrametric analysis, 161–203, Contemp. Math., 704, Amer. Math. Soc., Providence, RI, 2018. |
6 | Alain Escassut, Tạ Thị Hoài An, New applications of the $p$-adic Nevanlinna theory p-Adic Numbers Ultrametric, p-Adic Numbers, Ultrametric Analysis and Applications, 10 (2018), 12–31. |
7 | Tạ Thị Hoài An, Nguyen Viet Phuong, Uniqueness theorems for differential polynomials sharing a small function. Computational Methods and Function Theory, 17 (2017), 613–634, SCI(-E); Scopus. |
8 | Alain Escassut, Tạ Thị Hoài An, P-Adic Nevanlinna Theory Outside of a Hole, Vietnam Journal of Mathematics, 45 (2017), 681–694, (Scopus). |
9 | Thomas Hales, Mark Adams, Gertrud Bauer, Tat Dat Dang, John Harrison, Hoàng Lê Trường, Cezary Kaliszyk, Victor Magron, Sean Mclaughlin, Nguyễn Tất Thắng, Quang Truong Nguyen, Tobias Nipkow, Steven Obua, Joseph Pleso, Jason Rute, Alexey Solovyev, Tạ Thị Hoài An, Trần Nam Trung, Thi Diep Trieu, Josef Urban, Ky Vu, Roland Zumkeller, A formal proof of the Kepler onjecture, Forum of Mathematics, Pi, 5 (2017) 29 pages. |
10 | Tạ Thị Hoài An, Cherry William, Wang Julie Tzu-Yueh, Supplement and Erratum to "Algebraic degeneracy of non-Archimedean analytic maps'' [Indagationes Mathematicae (N.S.) 19 (2008) 481–492] , Indagationes Mathematicae (N.S.) 26 (2015), 329–336,SCI(-E); Scopus. |
11 | Tạ Thị Hoài An, Nguyen Thi Ngoc Diep, Genus one factors of curves defined by separated variable polynomials, Journal of Number Theory, 133 (2013), 2616-2634, SCI(-E); Scopus. |
12 | Tạ Thị Hoài An, Hsiu-Lien Huang and J. T.-Y. Wang, Generalized B\"uchi's problem for algebraic functions and meromorphic functions, Mathematische Zeitschrift 273 (2013), 95-122, SCI(-E); Scopus. |
13 | Tạ Thị Hoài An, Nguyen Thi Ngoc Diep, Heights of Function Field Points on Curves Given by Equations with Separated Variables, International Journal of Mathematics,23 (2012), SCI(-E); Scopus. |
14 | Tạ Thị Hoài An, William Cherry, Preface [Special issue dedicated to Professor Hà Huy Khoái on the occasion of his 65th birthday], Vietnam J. Math. 39 (2011), no. 3, v--vii. |
15 | Tạ Thị Hoài An, J. T.-Y. Wang, Hensley's problem for complex and non-Archimedean meromorphic functions, Journal of Mathematical Analysis and Applications 381(2011), 661 -- 677, SCI(-E); Scopus. |
16 | Tạ Thị Hoài An, A. Levin and J. T.-Y. Wang, A $p$-adic Nevanlinna-Diophantine correspondence, Acta Arithmetica 146 (2011), 379 -- 397, SCI(-E); Scopus. |
17 | Tạ Thị Hoài An, Unique range sets for meromorphic functions constructed without an injectivity hypothesis, Taiwanese Journal of Mathematics, 15 (2011), 697 -- 709, SCI(-E); Scopus. |
18 | Tạ Thị Hoài An, Julie Tzu-Yueh Wang, A note on uniqueness polynomials of entire functions, Vietnam J. Math. 37 (2009), 225-236. |
19 | Tạ Thị Hoài An, Ha Tran Phuong, On an explicit estimate on multiplicity truncation in the second main theorem for holomorphic curves encountering hypersurfaces in general position in projective space, Houston Journal of Mathematics, 35 (2009), 775-786. |
20 | Hà Huy Khoái, Tạ Thị Hoài An, A survey on uniqueness polynomials and unique range sets. In: Some topics on value distribution and differentiability in complex and p-adic analysis.,143-163; Math. Monogr. Ser., 11, Sci. Press Beijing, 20008. |
21 | Tạ Thị Hoài An, Hà Huy Khoái, Uniqueness polynomials and unique range sets. Some topics on value distribution and differentiability in complex and p-adic analysis, 148–163, Math. Monogr. Ser., 11, Sci. Press Beijing, Beijing, 2008. |
22 | Tạ Thị Hoài An, A. Escassut, Meromorphic solutions of equations over non-Archimedean fields, Ramanujan J. 15 (2008), N0 3, 415 - 433. |
23 | Tạ Thị Hoài An, J. T.-Y. Wang and P.-M. Wong, Non-Archimedean analytic curves in the complements of hypersurface divisors. J. Number Theory 128 (2008), 2275 - 2281. |
24 | Tạ Thị Hoài An, W. Cherry and J.T.-Y. Wang, Algebraic degeneracy of non-archimedean analytic maps, Indagationes Math. 19 (2008), 481-492, preprint arXiv:0708.0401. |
25 | Tạ Thị Hoài An, Wang, Julie Tzu-Yueh, An effective Schmidt's subspace theorem for non-linear forms over function fields. Journal of Number Theory 125 (2007), no. 1, 210--228, (SCI(-E), Scopus). |
26 | Tạ Thị Hoài An, J. T.-Y. Wang, Unique range sets and uniqueness polynomials for algebraic curves, Trans. Amer. Math. Soc. 359 (2007), 937 - 964(electronic). |
27 | Tạ Thị Hoài An, A defect relation for non-Archimedean analytic curves in arbitrary projective varieties, Proc. Amer. Math. Soc. 135 (2007), 1255 - 1261. |
28 | Tạ Thị Hoài An, J. T.-Y. Wang, An effective Schmidt's subspace theorem for non-linear forms over function fields, J. Number Theory 125 (2007), 210 - 228. |
29 | Tạ Thị Hoài An, Julie Tzu-Yueh Wang, Pit-Mann Wong, Unique range sets and uniqueness polynomials in positive characteristic. II. Acta Arith. 116 (2005), N0 2, 115 - 143. |
30 | Tạ Thị Hoài An, J. T.-Y. Wang, Unique range sets for non-Archimedean entire functions in positive characteristic fields. In: Ultrametric functional analysis, 323 - 333, Contemp. Math. 384, Amer. Math. Soc., Providence, RI, 2005. |
31 | Tạ Thị Hoài An, J. T.-Y. Wang and P.-M. Wong, Strong uniqueness polynomials: the complex case, Complex Var. Theory Appl. 49 (2004), 25 - 54. |
32 | Tạ Thị Hoài An, Julie Tzu-Yueh Wang, Pit-Mann Wong, Unique range sets and uniqueness polynomials in positive characteristic. Acta Arith. 109 (2003), 259 - 280 |
33 | Hà Huy Khoái, Tạ Thị Hoài An, Uniqueness problem with truncated multiplicities for meromorphic functions on a non-Archimedean field, Southeast Asian Bull. Math. 27 (2003), 477 - 486. |
34 | Tạ Thị Hoài An, J. T.-Y. Wang, Uniqueness polynomials for complex meromorphic functions. Internat, J. Math. 13 (2002), 1095 - 1115. |
35 | Tạ Thị Hoài An, A new class of unique range sets for meromorphic functions on $\Bbb C$. Dedicated to the memory of Le Van Thiem (Hanoi, 1998), Acta Math. Vietnam. 27 (2002), 251 - 256. |
36 | Hà Huy Khoái, Tạ Thị Hoài An, On uniqueness polynomials and bi-URs for $p$-adic meromorphic functions, J. Number Theory 87 (2001), N0 2, 211 - 221. |
1 | IMH20230605, Tạ Thị Hoài An, Ngo Quoc Hoan, Polylogarithm functions via Nevallinna theory |
2 | IMH20239604, Tạ Thị Hoài An, Ngo Quoc Hoan, Multiple Eulerian polynomials |
3 | IMH20221205, Tạ Thị Hoài An, Nguyen Viet Phuong, Quasi-normal family of meromorphic functions |
4 | IMH20221204, Tạ Thị Hoài An, Nguyen Viet Phuong, A non-Archimedean second main theorem for small functions and applications, Accepted by Taiwanese Journal of Mathematics |
Tin tức nổi bật
03/12/24, Hội nghị, hội thảo: International workshop on “Commutative Algebra and related Combinatoric structures” |
06/01/25, Hội nghị, hội thảo: The 3rd Vietnam - Korea joint workshop on selected topics in mathematics |