
QUASI-NORMAL FAMILY OF MEROMORPHIC FUNCTIONS
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Abstract. Let F be a family of meromorphic functions on a domain D such
that for each f ∈ F , its first derivative is bounded on the set of zeros of f.
For all f ∈ F and z ∈ D, if there is a holomorphic function ϕ such that
f ′(z) 6= ϕ′(z) then F is quasi-normal of order 1 on D. Moreover, f ′ − R has
infinitely many zeros, with R 6≡ 0 is a rational function. This result is a
generalization of a result of Jianming Chang [4] and a result of Pang et al.
[15].

1. Introduction.

A family F of meromorphic functions on a domain D is said to be normal on

D (in the sense of Montel) if for each sequence {fn} ⊂ F there is a subsequence

which converges spherically locally uniformly in D. F is said to be quasi-normal

on D if for each sequence {fn} ⊂ F there is a subsequence and a set E (can depend

on the subsequence) has no accumulation point in D such that the subsequence

converges spherically locally uniformly in D \ E. When the cardinality of E at

most ν points, we say that F is quasi-normal of order ν on D (see [5, 6, 17]).

In 2005, Nevo, Pang and Zalcman [14] proved that the family F is quasi-normal

on D if for any h ∈ F , all of its zeros are multiple and h′(z) 6= 1, for all z ∈ D.
Two years later, in [13] they improved to the case, for all h ∈ F , if all zeros of

h have multiplicity at least k + 1. and there exists a univalent analytic function

ϕ on D such that h(k)(z) 6= ϕ′(z) for all z ∈ D then F is quasi-normal on D. In

[10], [9], [19] the authors gave conditions such that a family F is normal if that

all zeros of meromorphic functions h ∈ F are of multiplicity at least 3, and all

zeros of h(k) are of multiplicity at least 2.

Jianming Chang in [4, Theorem 3] received the same conclusion when he re-

placed the condition “all zeros of h are multiple” by a weaker condition that the

set

Mh = h′(h−1(0)) = {h′(z) : h(z) = 0}
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is bounded and keep the condition that h′(z) 6= 1 for all z ∈ D.
In this paper, we will extend Chang’s result by replacing the constant by an

holomorphic function. Our results are stated as following.

Theorem 1.1. Let F be a family of meromorphic functions on the plane domain

D. Suppose that for each f ∈ F , Mf is bounded. Assume that for all f ∈ F and

z ∈ D, there is a holomorphic function ϕ univalent on D such that f ′(z) 6= ϕ′(z).

Then F is quasi-normal of order 1 on D.

Our proof is quite similar to the proofs of [4, Theorem 3]. However, we also

need some new techniques to deal for rational cases.

Let f be a transcendental meromorphic function. Following the results about

normal and quasi-normal families, in [4], Chang proved that if Mf is bounded,

then f ′ takes each finite nonzero value infinitely many times. In [2] Bergweiler

discussed a Yik-Man Chiang’s question whether (f2)′ − α has infinitely many

zeros if α a small function respected to f (i.e. it is a meromorphic function

satisfies T (r;α) = o(T (r; f)) as r → ∞. Here T (r; f) denotes the Nevanlinna

characteristic of f. In that paper, Bergweiler gave positive answer for a special

case when α is a polynomial and f has finite order. It was shown in [3] that if

all zeros and poles of f are multiple, except possibly finitely many, and R 6≡ 0 is

a rational function, then f ′ − R has infinitely many zeros. In 2008, Pang et al.

[15] extended above result by removing the restriction on the poles of f. They

shown that if all zeros are multiple and R 6≡ 0 is a rational function, then f ′ −R
has infinitely many zeros. In the following theorem, we can remove the condition

that all zeros and poles of f are multiple. We also generalize the result in [2] by

replaced a polynomial α by a rational function R as follows.

Theorem 1.2. Let f be a transcendental meromorphic function satisfying the set

Mf := f ′(f−1(0)) = {f ′(z) : f(z) = 0}

is bounded. Assume that R is a non-zero rational function. Then f ′ − R has

infinitely many zeros.

Thus, the above theorem is a generalization of a result of Jianming Chang [4,

Theorem 1], where instead of the constant case, we consider a univalent holo-

morphic function, and we replace the condition result of Pang et al. [15] that all

zeros of f are multiple by a weaker condition. We use the ideas as in the proof of

Theorem 1 in [15], with some new ideas when we replace the condition that all

zeros of f are multiples by the weaker condition that the set Mf is bounded and

the constant is replaced by the rational function.
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2. Notation and recall results

Let {fn} be a sequence of functions defined on a domain D. If for any compact

subset E in D, there is N ∈ N such that for all n > N, fn is holomorphic function

on E, then {fn} is said to be locally uniformly holomorphic on D.

For each holomorphic function f and for each closed subset E ⊂ C, we denote

the spherical derivative by

f#(z) =
|f ′(z)|

1 + |f(z)|2
,

S(E, f) :=
1

π

∫∫
E

(f#(z))2dσ.

We write S(Dz0(r), f) = S(t, f), where Dz0(r) := {z : |z − z0| ≤ r}.
The order of f on C is defined as

ρ(f) = lim sup
r→∞

log+ T0(r, f)

log r
,

where T0(r, f) ==
∫ r
0
S(t,f)
t dt is the Ahlfors - Shimizu characteristic of f [8, p.

12]. It is easy that if f# is bounded on C then f has order at most 2.

We will use the notation fn
χ

=⇒ f if {fn} converges to f in the spherical

metric uniformly on compact subsets of D and by fn =⇒ f if it converges in

the Euclidean metric. To prove our result, we first recall some of the following

lemmas.

Lemma 2.1. [16, Lemma 2] Let F be a family of meromorphic functions in a

domain D. Suppose that there exists R ≥ 1 such that Mf ⊂ D0(R) for each f ∈ F .

If F is not normal at z0, then for each 0 ≤ α ≤ 1, there exists points zn ∈ D

with zn → z0, functions fn ∈ F and positive numbers ρn → 0 and a nonconstant

meromorphic function g on C such that

ρ−αn fn(zn + ρn z)
χ

=⇒ g(z)

on C, and

Mg ⊂ D0(R), g#(z) ≤ g#(0) = R+ 1.

In particular, g has order at most 2.

Lemma 2.2. [1, Lemma 5] Let f be a meromorphic function of finite order on C
such that f ′ 6= 1. If there exists R > 0 such that Mf ⊂ D0(R), then f is rational

of a form either

f(z) = z + a+
b

(z + c)m
(2.1)

or f(z) = αz + β with with a, b, c, α, β ∈ C, b 6= 0, and m ∈ N.
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Remark 2.1. The case f(z) = αz + β in Lemma 2.2 can be omitted if

f#(z) ≤ f#(0) ≤ R+ 1.

Lemma 2.3. [4, Lemma 4] Assume that the rational function f defined in (2.1)

has two zeros ±1
2 and Mf ⊂ D0(R), then there is a positive constant K which

depends only on R such that

sup
D0(1)

f#(z) ≤ K.

Denote by n(D, f) the number of poles of f in D (counting multiplicity). We

recall the following lemma.

Lemma 2.4. [18, Lemma 2.5] Let {fn} be a family of meromorphic functions in

Dz0(r). suppose that

(a) fn
χ

=⇒ f in Dz0(r) \ {z0}, where f(6≡ 0) may be ∞ identically, and

(b) there exists M0 > 0 such that n
(
Dz0(r), 1

fn

)
≤M0 for sufficiently large n.

Then, there exists M > 0 such that S(Dz0(r/4), fn) < M for sufficiently large n.

Lemma 2.5. [4, Lemma 10] Let α 6= 0 be a complex number and f be a mero-

morphic function on C of infinite order such that f ′(z) 6= α. If there exists an

M ≥ 1 such that Mf ⊂ D0(M), then f has infinitely many pairs of distinct zeros

(zn,1, zn,2) such that zn,1 − zn,2 → 0 and

sup
D0(1)

F#
n (z) −→∞, where Fn(z) :=

f((zn,1 + zn,2)/2 + (zn,1 − zn,2)z)
zn,1 − zn,2

.

3. Lemmas

Next, we prove the following lemmas

Lemma 3.1. Let {ψn} be a sequence of holomorphic functions converged to ψ in

the Euclidean metric on a domain D. Assume that ψ(z) 6= 0,∞ on D. Let {fn}
be a sequence of meromorphic functions on D such that for each n, f ′n(z) 6= ψn(z)

for all z ∈ D. Assume that Mfn ⊂ D0(M) for some M ≥ 1. For each z0 ∈ D
and each n, assume that fn has at most one single pole in D and tending to z0

as n→∞. Then {fn} is normal on D \ {z0}.

Proof. We will prove by counter argument, that there is z1 ∈ D \ {z0} such that

the sequence {fn} is not normal at z0. From Lemma 2.1, we can find points

zn → z1 and positive numbers ρn → 0 and a subsequence of {fn} (which is still

call by {fn}), and a nonconstant meromorphic function g on C such that

ρ−1n fn(zn + ρn z)
χ

=⇒ g(z), (3.1)



5

Mg ⊂ D0(M) and g#(z) ≤ g#(0) = M + 1.

Put gn(z) := ρ−1n fn(zn + ρnz), we have g′n(z) =⇒ g′(z) and

g′n(z) = f ′n(zn + ρn z) 6= ψn(zn + ρnz) =⇒ ψ(z1).

Applying Hurwitz’s Theorem, it follows either g′(z) 6= ψ(z1) or g′(z) ≡ ψ(z1).

If g′(z) ≡ ψ(z1). Since |g′(z)| ≤ M whenever g(z) = 0, hence |ψ(z1)| ≤ M.

Therefore,

M + 1 = g# =
|g′(0)|

1 + |g(0)|2
=
|ψ(z1)|

1 + |g(0)|2
≤M,

which is a contradiction. Thus g′(z) 6= ψ(z1) on C. So by Lemma 2.2 and its

remark, we have

g(z) = ψ(z1)
(
z + a+

b

(z + c)m
)

= ψ(z1)
((z + a)(z + c)m + b

(z + c)m

)
(3.2)

with a, b, c ∈ C, b 6= 0 and m ∈ N.

By (3.1) and (3.2), there exists a sequence ζn,∞ → −c such that gn(ζn,∞) =∞
for sufficiently large n. Thus, writting zn,∞ = zn + ρnζn,∞, we have zn,∞ → z1

and fn(zn,∞) = ∞ for sufficiently large n. Since each fn has at most one single

pole in D and tending to z0 as n→∞, we get z1 = z0. This is impossible. �

The following two lemmas are extensions of [4, Lemma 7, Lemma 8], where

instead of the condition f ′n(z) 6= 1 as in Lemmas of Jianming Chang, we consider

the condition f ′n(z) 6= ψn(z) with {ψn} be a sequence of holomorphic functions.

The proof of this lemmas is step-by-step the same as the proof of Lemma 7 and

Lemma 8 in [4], but we need to modify the calculations when using the condition

in the case of the holomorphic function. In the proof of these lemmas, we omit

similar proofs. Interested readers can see in the proof of [4, Lemma 7, Lemma 8].

In this paper, we only mention the changes compared with the proof of Jianming

Chang.

Lemma 3.2. Let {ψn} be a sequence of holomorphic functions converged to ψ in

the Euclidean metric on a domain D. Assume that ψ(z) 6= 0,∞ on D. Let {fn}
be a sequence of meromorphic functions on D such that f ′n(z) 6= ψn(z) for all n

and all z ∈ D. Assume that Mfn ⊂ D0(M) for some M ≥ 1. Assume that there

is z0 ∈ D such that:

(i) All of subsequence of {fn} is not normal at z0;

(ii) Each fn has at most one single pole tending to z0 as n→∞; and

(iii) {fn} is normal on D \ {z0}.
Put f(z) =

∫ z
z0
ψ(ζ)dζ, then
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(1) there exists a subsequence of {fn}, (we still denote by {fn}), converges to

f in the spherical metric on D \ {z0}, and

(2) there is r > 0 and K > 0 such that Dz0(r) ⊂ D and S(Dz0(r), fn) < K.

Proof. Without loss of generality,we may assume that z0 = 0 and ψ(0) = 1. By

the same proof as in the proof of [4, Lemma 7], we deduce that fn has m+1 zeros

z
(i)
n,0 = zn + ρnζ

(i)
n,0 and a pole zn,∞ = zn + ρnζ

(i)
n,∞ with multiplicity m and {f∗n} is

normal on D \ {0}, where

f∗n(z) =
fn(z)(z − zn,∞)m∏m+1

i=1 (z − z(i)n,0)
(3.3)

Now, we will prove {f∗n} is normal on D. It suffices to show that {f∗n} is normal at

0. Indeed, by the condition (ii), there exists δ > 0 such that f∗n are holomorphic

on D0(δ) ⊂ D.
First, we will prove that f∗n has no zeros tending to 0 as n → ∞. Otherwise,

choose z∗n,0 → 0 to be the zeros of f∗n such that f∗n has no zeros in Dzn(|z∗n,0−zn|).
Write z∗n,0 = zn + ρnζ

∗
n,0. By

f∗n(zn + ρnζ) =⇒ 1 (3.4)

on C, we get ζ∗n,0 →∞. Let 0 < δ1 < δ and

F ∗n(z) = f∗n
(
zn +

z∗n,0 − zn
δ1

z
)
.

Then F ∗n are locally uniformly holomorphic on C such that F ∗n(δ1) = 0 and

F ∗n(z) 6= 0 on D0(δ1). Let

Ln(z) =
δ1Rn

(
zn +

z∗n,0−zn
δ1

z
)

z∗n,0 − zn
=

∏m+1
i=1 (z − δ1ζ(i)n,0/ζ∗n,0)
(z − δ1ζn,∞/ζ∗n,0)m

=⇒ z on C∗ (3.5)

and

Fn(z) := Ln(z)F ∗n(z) =
δ1fn

(
zn +

z∗n,0−zn
δ1

z
)

z∗n,0 − zn
. (3.6)

We have

F ′n(z) = f ′n
(
zn +

z∗n,0 − zn
δ1

z
)
6= ψn

(
zn +

z∗n,0 − zn
δ1

z
)

for all n and z ∈ D0(δ), MFn ⊂ D0(δ1) and each Fn has at most one single pole

in D0(δ) tending to 0 as n→∞. By Lemma 3.1, {Fn} is normal on D0(δ) \ {0}
and hence {F ∗n} is also normal on D0(δ) \ {0}. As F ∗n(δ1) = 0, we may assume

that F ∗n =⇒ F ∗ on D0(δ) \ {0} with F ∗(δ1) = 0.
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If F ∗ ≡ 0 then Fn =⇒ 0, F ′n =⇒ 0 and F ′′n =⇒ 0 on D0(δ) \ {0}. Thus, we have∣∣∣n(δ1, F ′n(z)− ψn
(
zn +

z∗n,0 − zn
δ1

z
))
− n

(
δ1,

1

F ′n(z)− ψn
(
zn +

z∗n,0−zn
δ1

z
))∣∣∣

=
1

2π

∣∣∣ ∫
|z|=δ1

F ′′n (z)− ψ′n
(
zn +

z∗n,0−zn
δ1

z
)( z∗n,0−zn

δ1

)
F ′n(z)− ψn

(
zn +

z∗n,0−zn
δ1

z
) dz

∣∣∣ =⇒ 0 as n→∞,

which implies

n
(
δ1, F

′
n(z)− ψn

(
zn +

z∗n,0 − zn
δ1

z
))

= n
(
δ1,

1

F ′n(z)− ψn
(
zn +

z∗n,0−zn
δ1

z
)) = 0

for n big enough. Hence, Fn has no pole on D0(δ1). This is a contradiction as

ζn,∞/ζ
∗
n,0 → 0 is a pole of Fn. Therefore F ∗ 6≡ 0. By F ∗n(z) 6= 0 on D0(δ1) and

by maximum modulus principle, we obtain F ∗n =⇒ F ∗ on D0(δ). Since F ∗n(0) =

f∗n(zn) = g∗n(0) → 1 as n → ∞, we obtain F ∗(0) = 1, which implies F ∗ is

non-constant.

On the other hand, we have

F ′n(z)− ψn
(
zn +

z∗n,0 − zn
δ1

z
)

=⇒ (zF ∗)′ − 1

on D0(δ) \ {0}. If (zF ∗)′ ≡ 1 then there is a constant α such that zF ∗ ≡ z + α.

By F ∗(0) = 1, we get α = 0. Hence F ∗ ≡ 1. This is impossible as F ∗(δ1) = 0.

Thus (zF ∗)′ − 1 6≡ 0.

By maximum modulus principle and F ′n(z)− ψn
(
zn +

z∗n,0−zn
δ1

z
)
6= 0, we have

F ′n(z)− ψn
(
zn +

z∗n,0 − zn
δ1

z
)

=⇒ (zF ∗)′ − 1

on D0(δ). By Hurwitz’s theorem, we obtain (zF ∗)′ − 1 6= 0. On the other hand,

we have ((zF ∗)′ − 1)|z=0 = F ∗(0)− 1 = 0. This is a contradiction.

Therefor f∗n has no zeros tending to 0, which implies f∗n is non-zero holomorphic

in some neighbourhoodD0(η) for some 0 < η < δ. By maximum modulus principle

and {f∗n} is normal on D \ {0}, we deduce that {f∗n} is normal at 0. Therefore, it

is normal on D. As f∗n(zn)→ 1, let f∗n → f∗ on D and f∗(0) = 1. we have

fn
χ

=⇒ f = zf∗ on D \ {0}.

Since f ′n(z) − ψn(z) 6= 0 and f ′n(z) − ψn(z) =⇒ f ′(z) − ψ(z) on D \ {0}. From

Hurwitz’s theorem, we have f ′(z)−ψ(z) ≡ 0 or f ′(z)−ψ(z) 6= 0. If f ′(z)−ψ(z) 6=
0, by maximum modulus principle, we get f ′n(z) − ψn(z) =⇒ f ′(z) − ψ(z) on

D0(δ) ⊂ D. By Hurwitz’s theorem again, we have f ′(z) − ψ(z) 6= 0 on ∆(0, δ).

This is impossible, as (f ′(z) − ψ(z))|z=0 = ((zf∗)′ − ψ(z))|z=0 = f∗(0) − 1 = 0.
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Thus, f ′(z) ≡ ψ(z) on D \ {0}. It follows that f ′ has no poles on D \ {0} and

f ′(z) has a removable singularity at z = 0 and hence f(z) also has a removable

singularity at z = 0. From maximum modulus principle, we obtain f ′(z) ≡ ψ(z)

on D. Since zf∗ = f and f∗(0) = 1, we have f(0) = 0. Thus,

f(z) =

∫ z

0
f ′(ζ)dζ =

∫ z

0
ψ(ζ)dζ.

We continue to prove Assertion (2). Since f∗n 6= 0 on disk D0(η), by (3.3) we

get n
(
η, 1

fn

)
≤ m + 1. By Lemma 2.4, there is a positive number K such that

S
(
D0(

η
4

)
, fn
)
< K.

We are done for proof of Lemma 3.2. �

Lemma 3.3. Let {ψn} be a sequence of holomorphic functions converged to ψ in

the Euclidean metric on a domain D. Assume that ψ(z) 6= 0 and ∞ on D. For

all n and all z ∈ D, let {fn} be a sequence of meromorphic functions on D such

that f ′n(z) 6= ψn(z). Assume that f ′n(f−1n (0)) ⊂ D0(M) for some M ≥ 1. Suppose

that at some point z0 ∈ D,

(i) All subsequence of {fn} is not normal at z0; and

(ii) Each fn has at least two distinct poles tending to z0 as n→∞.

Then there is a subsequence of {fn}, (we denote by {fn} again), such that each

fn has distinct zeros an and bn tending to z0 as n→∞ such that

sup
D0(1)

h#n (z) −→∞,

where

hn(z) :=
fn(dn + (an − bn)z)

an − bn
, and dn =

an + bn
2

.

Proof. Without loss of generality, we may assume that z0 = 0 and ψ(0) = 1. As

in the proof of [4, Lemma 7], we get zn,∞ = zn+ρnζn,∞ is a pole of fn with exact

multiplicity m. Let

f∗n(z) =
fn(z)(z − zn,∞)m∏m+1

i=1 (z − z(i)n,0)
(3.7)

Now, we show that f∗n has at least one zero tending to 0. Indeed, suppose not, then

there exists δ > 0 such that f∗n 6= 0 in D0(δ) ⊂ D. We have f ′n = (Rnf
∗
n)′ 6= ψn

and Rn(z) =⇒ z on C∗. Applying Lemma 3.1, we deduce that {f∗n} is normal on

D0(δ) \ {0}. Hence, we may say that f∗n =⇒ f∗ on D0(δ) \ {0}.
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If f∗ ≡ 0 then fn =⇒ 0, f ′n =⇒ 0 and f ′′n =⇒ 0 on D0(δ) \ {0}. Applying the

argument principle, we have∣∣n(δ
2
, f ′n(z)− ψn(z)

)
− n

(δ
2
,

1

f ′n(z)− ψn(z)

)∣∣ =
1

2π

∣∣∣ ∫
|z|= δ

2

f ′′n(z)− ψ′n(z)

f ′n(z)− ψn(z)
dz
∣∣∣

=⇒ 1

2π

∣∣∣ ∫
|z|= δ

2

ψ′(z)

ψ(z)
dz
∣∣∣ =

∣∣n(δ
2
, ψ(z)

)
− n

(δ
2
,

1

ψ(z)

)∣∣ = 0,

and hence

n
(δ

2
, f ′n(z)− ψn(z)

)
= n

(δ
2
,

1

f ′n(z)− ψn(z)

)
= 0

for sufficiently large n. Hence, fn has no pole on D0(
δ
2), which is impossible as

fn has a pole zn,∞ → 0. So, f∗ 6≡ 0. Since f∗n 6= 0 on disk D0(δ), by maximum

modulus principle, we deduce that f∗n =⇒ f∗ on D0(δ). Since f∗n(zn) = g∗(0) →
1, we obtain f∗(0) = 1. Therefore f∗n has no poles tending to 0, which is a

contradiction to (ii). Therefore f∗n contains at least one zero z∗n,0 tending to 0.

From

f∗n(zn + ρnζ) =⇒ 1

on C, we have

ζ∗n,0 =
z∗n,0 − zn

ρn
→∞.

Set

hn(z) =
fn(z∗n,0 + z

(1)
n,0)/2 + (z

(1)
n,0 − z∗n,0)z)

z
(1)
n,0 − z∗n,0

.

Then we have

hn

(1

2

)
= 0 and hn

(zn,∞ − (z∗n,0 + z
(1)
n,0)/2

z
(1)
n,0 − z∗n,0

)
=∞.

Since

zn,∞ − (z∗n,0 + z
(1)
n,0)/2

z
(1)
n,0 − z∗n,0

=
2ζn,∞ − (ζ∗n,0 + ζ

(1)
n,0)

2(ζ
(1)
n,0 − ζ∗n,0)

→ 1

2
,

each subsequence of {hn} is not equi-continuous in a neibourhood of z = 1
2 and

hence it is not normal at 1
2 . The conclusion follows from Marty’s theorem. We

are done for a proof of Lemma 3.3. �

4. Proof of Theorem 1.1

The idea of proof is following from [4], but we replace the condition f ′(z) 6= 1

by f ′(z) 6= ϕ′(z) for a holomorphic function ϕ.
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Proof of Theorem 1.1. Asume that there is {fn} ⊂ F and E ⊂ D such that {fn}
is not normal.

Case 1. For any z0 ∈ E, assume that fn has at most only one single pole that

tends to z0.

In this case, by Lemma 3.1, we have {fn} is normal on Dz0(δ) \ {z0} for some

δ > 0. Therefore E does not have any accumulation point in D.

Assume that there are z1 6= z2 ∈ E and a subsequence of {fn}, (we keep

calling by {fn}), such that {fn} is not normal at z1 and z2. Aplying Lemma 3.2

to ϕ′, there is a subsequence of {fn}, (we keep calling by {fn}), such that fn

converges to ϕ(z)− ϕ(z1) and ϕ(z)− ϕ(z2) in the spherical metric on D \ E, so

that ϕ(z1) = ϕ(z2). By the hypothesis ϕ is univalent, we have z1 = z2. This is a

contradiction. Therefore, {fn} has at most one non-normal point, which means

F is quasinormal of order 1.

Case 2. There exists z0 ∈ E, and a subsequence of {fn}, (we keep calling by

{fn}), such that each fn has at least two distinct poles tending to z0.

In this case, for each 0 < δ < 1, there exists N(δ) such that for n ≥ N(δ), the

function fn has at least two distinct zeros in Dz0(δ). Lemma 3.3 implies that one

can chose a subsequence of {fn}, (we keep calling by {fn}), and a constant K

such that each fn has zeros an 6= bn ∈ Dz0(δ) tending to z0 and

sup
D0(1)

h#n (z) > K + 1, (4.1)

for n big enough, where

hn(z) :=
fn(dn + (an − bn)z)

an − bn
, and dn =

an + bn
2

.

Fix δ > 0, we can choose zeros of fn in Dz0(δ) such that an 6= bn satisfying

(4.1) and

σn :=
|an − bn|

δ − |dn − z0|
is minimal. (4.2)

Therefore, σn → 0.

Taking a subsequence if necessary, we may assume that dn → d. Clearly, we

have Mh = h′n(h−1n (0)) ⊂ D0(M) and

h′n(z) 6= ψn(z) := ϕ′(dn + (an − bn)z) =⇒ ϕ′(d)

on C.
We will prove that that all of subsequence of {hn} is not normal on C. Oth-

erwise, assume that hn
χ

=⇒ h on C. Since hn
(
± 1

2

)
= 0, Mh ⊂ D0(M) and

h′n(z) 6= ψn(z), we have h
(
± 1

2

)
= 0, Mh ⊂ D0(M) and either h′(z) 6= ϕ′(d) or
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h′(z) ≡ ϕ′(d). If the latter case occurs, then h(z) = ϕ′(d)z + λ for some constant

λ. Since h
(
± 1

2

)
, we have ϕ′(d) = 0, which is impossible as ϕ is univalent. Hence,

we have h′(z) 6= ϕ′(d). By (4.1), we have

sup
D0(1)

h#n (z) ≥ K + 1.

Hence, applying Lemma 2.2 and Lemma 2.3 to the function h, we deduce that

h is of infinite order. Therefore, by Lemma 2.5, there is infinitely many pairs of

distinct zeros (αl, βl) of h such that αl − βl → 0 and

sup
D0(1)

F#
l (z) −→∞

as l→∞, where Fl(z) :=
h((αl + βl)/2 + (αl − βl)z)

αl − βl
.

Fix l such that |αl − βl| < 1 and

sup
D0(1)

F#
l (z) ≥ K + 1. (4.3)

Since hn
χ

=⇒ h on C, there exist points αn,l → αl and βn,l → βl such that

hn(αn,l) = hn(βn,l) = 0. By (4.3), for n sufficiently large, we have

sup
D0(1)

F#
n,l(z) > K + 1, (4.4)

where Fn,l(z) :=
hn((αn,l + βn,l)/2 + (αn,l − βn,l)z)

αn,l − βn,l
.

Put

a∗n,l = dn + (an − bn)αn,l, b∗n,l = dn + (an − bn)βn,l. (4.5)

Then fn(a∗n,l) = fn(b∗n,l) = 0. Since σn → 0 and αn,l → αl, we have

|a∗n,l − z0| ≤ |dn − z0|+ |an − bn||αn,l| = δ −
( 1

σn
− |αn,l|

)
|an − bn| < δ,

for sufficiently large n. Thus a∗n,l ∈ Dz0(δ). By similar arguments, we also have

b∗n,l ∈ Dz0(δ).

Let

Ln(z) =
fn(d∗n,l + (a∗n,l − b∗n,l)z)

a∗n,l − b∗n,l
, where d∗n,l =

a∗n,l + b∗n,l
2

.

It is easy that

Ln(z) =
hn((αn,l + βn,l)/2 + (αn,l − βn,l)z)

αn,l − βn,l
= Fn,l(z).

Hence, we get

sup
D0(1)

L#
n (z) > K + 1.
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However, we have

|a∗n,l − b∗n,l|
δ − |d∗n,l − z0|

=
|(an − bn)(αn,l − βn,l)|

δ − |dn − z0 + (an − bn)(αn,l + βn,l)/2|

=
|an − bn|

δ − |dn − z0|
|αn,l − βn,l|(δ − |dn − z0|)

δ − |dn − z0 + (an − bn)(αn,l + βn,l)/2|
. (4.6)

Given ε > 0. Since σn → 0, we have

|dn − z0 + (an − bn)
αn,l + βn,l

2
| < |dn|+ ε(δ − |dn − z0|)

|αn,l + βn,l|
2

for n big enough. Choose 0 < ε0 < 1 such that |αl − βl| < ε0. Since αn,l − βn,l →
αl − βl, we have αn,l − βn,l < ε0 for n big enough. Therefore, by combining with

(4.6), we have

|a∗n,l − b∗n,l|
δ − |d∗n,l − z0|

<
|an − bn|

δ − |dn − z0|
ε0

1− ε|αn,l + βn,l|/2
< σn, (4.7)

which contradicts that σn is the smallest. So, all of subsequence in {hn} is not

normal on C.
We denote by Λ the set of points such that {hn} is not normal. For each ζ0 ∈ Λ,

assume that hn has at most one pole tending to ζ0 as n→∞. Similar as in Case

1, we get {hn} is quasi-normal of order 1 and there is only ζ0 ∈ Λ such that

hn(ζ)
χ

=⇒ ϕ′(d)(ζ − ζ0) on C \ {ζ0},

which is contradiction hn
(
± 1

2

)
= 0. Hence, by Lemma 3.3, we only consider the

case there exists a subsequence of {hn}, (which we continue to call {hn}), such

that each hn has zeros α∗n 6= β∗n tending to ζ0 as n→∞ and

sup
D0(1)

H#
n (z) > K + 1

where K is the constant defined in Lemma 2.3 and

Hn(z) =
hn(d∗n + (α∗n − β∗n)z)

α∗n − β∗n
,with d∗n =

α∗n + β∗n
2

.

Let

α̂n = dn + (αn − βn)α∗n, β̂n = dn + (αn − βn)β∗n.

Using the same argument as the previous one, we have α̂n and β̂n are two zeros

of fn in ∆(z0, δ). Let

ĥn(z) =
fn(d̂n + (α̂n − β̂n)z)

α̂n − β̂n
, where d̂n =

α̂n + β̂n
2

.
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It is easy that ĥn(z) = Hn(z) and hence

sup
D0(1)

ĥ#n (z) > K + 1.

Similar as in the argument of (4.7), we have

|α̂n − β̂n|
δ − |d̂n − z0|

< σn

for n big enough. We get a contradiction that σn is minimal. The proof is

completed. �

5. Proof of Theorem 1.2

As a sequence of Theorem 1.1, we have following lemma.

Lemma 5.1. Let {ψn} be a sequence of holomorphic functions on the plane do-

main D such that ψn =⇒ ψ = ϕ′ on D, where ϕ is univalent on D. Let {fn} be

a sequence of meromorphic functions on D such that f ′n(z) 6= ψn(z) for all n and

all z ∈ D. Assume that there exists an M ≥ 1 such that f ′n(f−1n (0)) ⊂ D0(M).

If all subsequence of {fn} is not normal at some z0 ∈ D, then fn =⇒ ϕ − ϕ(z0)

on D \ {z0} and there exist δ > 0 and K > 0 such that Dz0(δ) ⊂ D and

S(Dz0(δ), fn) < K for sufficiently large n.

We will leave a proof of Theorem 1.2 since one can step-by-step do similarly as

in [15, Theorem 1] by replacing Theorem 1.1 and Lemma 5.1 instead of Theorem

A as in [15].
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