
A NON-ARCHIMEDEAN SECOND MAIN THEOREM FOR

SMALL FUNCTIONS AND APPLICATIONS

TA THI HOAI AN AND NGUYEN VIET PHUONG

Abstract. We establish a slowly moving target second main theorem for
meromorphic functions on a non-Archimedean field, with counting functions
truncated to level 1. As an application, we show that two meromorphic func-
tions on a non-Archimedean field must coincide if they share q (q ≥ 5) distinct
small functions, ignoring multiplicities. Thus, our work improves the results
in [2].

1. Introduction and main results

As a consequence of the Truncated Nevanlinna Second Main Theorem, R. Nevan-

linna [5] himself proved that for two distinct nonconstant meromorphic functions

f and g on the complex plane C, they cannot have the same inverse images for

five distinct values. Then, some authors (Yuhua and Jianyong [10], Yao [8], Thai

and Tan [6], for example) have generalized the result where distinct values are

replaced by small functions. Here, a meromorphic function a is called a small

function with respect to f if T (r, a) = o(T (r, f)) for r → ∞, where T (r, f) is

the Nevanlinna characteristic function of f . In 2002, Yi [9] extended the five

values theorem to the case of sharing five distinct small functions. The proofs of

the above results are based straightforwardly on Cartan’s auxiliary functions. In

2004, Yamanoi gave a sharp moving targets second main theorem with truncated

counting functions, and as its direct consequence, one can obtain Yi’s result.

Nevanlinna theory in complex analysis is so beautiful that one would naturally

be interested in determining how such a theory would look in K, an algebraically

closed field of characteristic zero, complete with respect to a non-Archimedean

absolute value |.|. Adams and Straus [1] (see also [3]) proved the above Nevan-

linna result about five distinct values in the complex case can be replaced with
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4 four distinct values in the p-adic case. To date, we do not have a sharp non-

Archimedean analog of the Yamanoi theorem. Therefore, one question is created:

what is the fewest number of shared slowly moving targets that uniquely deter-

mines a non-constant non-Archimedean meromorphic function?

Recently, A. Escassut and C. C. Yang [2] gave a truncated slowly moving

target second main theorem for non-Archimedean meromorphic functions. Their

proof makes use of different techniques than the theorem of Yamanoi in complex

analysis. As a consequence, they showed that two non-constant non-Archimedean

meromorphic functions sharing 7 slowly moving targets must be equal. However,

the number 7 is not sharp.

In this work we are able to increase the coefficient q
3 in front of the character-

istic function in Theorem 2 in [2] to 2q
5 . This allows us to lower the number of

slowly moving targets in the uniqueness result from seven to five. The problem

of whether a non-constant non-Archimedean meromorphic function is determined

by four slowly moving targets, as is the case with constant values as in Adams

and Straus’s work, remains open.

Our first result is as follows.

Theorem 1. Let f be a nonconstant meromorphic function on K. Let a1, . . . , aq

be q distinct small functions with respect to f. Then, we have

2q

5
T (r, f) ≤

q∑
i=1

N
(
r,

1

f − ai
)

+ S(r, f).

Let k be a positive integer or ∞, we denote by E(a, k, f) the set of distinct

zeros of f − a with multiplicities at most k, where a zero of f −∞ means a pole

of f.

Remark. If k = ∞, then the set E(a,∞, f) is just the set of distinct zeros of

f − a and was denoted by E(a, f) as usually.

Let f and g be nonconstant non-Archimedean meromorphic functions. Then,

E(a, k, f) = E(a, k, f) means that z0 is a zero of f − a with multiplicity m ≤ k if

and only if it is a zero of g−a with multiplicity n ≤ k, where m is not necessarily

equal to n, and if z0 is a zero of f − a with multiplicity p > k then it does not

need to be a zero of g − a.
In the special case k =∞, the condition E(a, f) = E(a, g) means f and g share

the function a, ignoring multiplicities, as usual.

As an application of Theorem 1, we get a uniqueness theorem for the mero-

morphic functions sharing a few small functions as follows.
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Theorem 2. Let f and g be two nonconstant meromorphic functions on K. Let

a1, . . . , aq (q ≥ 5) be q distinct small functions with respect to f and g. Let

k1, . . . , kq be q positive integers or +∞ with
q∑

j=1

1

kj + 1
<

2q(q − 4)

5(q + 4)
.

If

E(aj , kj , f) = E(aj , kj , g) (j = 1, . . . , q),

then f ≡ g.

In the case k1 = · · · = kq = k, we can get the result with slightly smaller

multiples as follows.

Theorem 3. Let f and g be two nonconstant meromorphic functions on K. Let

a1, . . . , aq (q ≥ 5) be q distinct small functions with respect to f and g. Let k be

a positive integer or +∞ with k > 3(q+4)
2(q−4) . If

E(aj , k, f) = E(aj , k, g) (j = 1, . . . , q),

then f ≡ g.

By Theorem 3, we obtain the following corollary, which is a uniqueness theorem

for non-Archimedean meromorphic functions sharing 5 small functions ignoring

multiplicities.

Corollary 1. Let f and g be two nonconstant meromorphic functions on K. Let

a1, . . . , a5 be 5 distinct small functions with respect to f and g. If f and g share

aj ignoring multiplicities (j = 1, . . . , 5, ) then f ≡ g.

Note that this Corollary 1 improves a result of A. Escassut and C. C. Yang [2,

Theorem 3], where the number of small functions is reduced to 5.

2. Preliminary on Nevanlinna Theory for non-Archimedean

meromorphic functions

We recall the following definitions and results (cf. [4]). Let K be an alge-

braically closed field of arbitrary characteristic, complete with respect to a non-

Archimedean absolute value |.|. Let f be a meromorphic function. We denote

by n
(
r, 1f
)

the number of zeros of f in {z with |z| < r}, counting multiplicity.

Define the counting function of f by

N
(
r,

1

f

)
=

∫ r

0

n
(
r, 1f
)
− n

(
0, 1f

)
t

dt+ n
(
0,

1

f

)
log r,
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where n
(
0, 1f

)
is the order of zero of f at z = 0.

We denote by Nk)

(
r, 1

f−a
)

the counting function of zeros of f − a with multi-

plicities at most k, by N (k+1

(
r, 1

f−a
)

the counting function of zeros of f − a with

multiplicities at least k+ 1, where each multiple zero in these counting functions

counted only once.

We define the compensation function by

m(r, f) = log+ |f |r = max{0, log |f |r},

and the characteristic function

T (r, f) = m(r, f) +N(r, f).

The logarithmic derivative lemma can be stated as follows (see [4]).

Lemma 1 (Logarithmic Derivative Lemma). Let f be a non-constant meromor-

phic function on K. Then for any integer k > 0, we have

m
(
r,
f (k)

f

)
= O(1)

as r →∞.

We state the first and second fundamental theorem in Nevanlinna theory (see

e.g. [4]):

Theorem 4 (The First Main Theorem). Let f(z) be a non-Archimedean mero-

morphic function and c ∈ K. Then

T (r,
1

f − c
) = T (r, f) +O(1).

Theorem 5 (Second fundamental theorem). Let a1, · · · , aq be a set of distinct

numbers of K. Let f be a non-constant meromorphic function on K. Then, the

inequality

(q − 2)T (r, f) ≤
q∑

j=1

N
(
r,

1

f − aj
)
− log r +O(1).

3. Proof of Theorem 1

We first consider the following lemma.

Lemma 2. Let f be a nonconstant meromorphic function on K. Let a1, . . . , a5

be distinct small functions with respect to f. We have

2T (r, f) ≤
5∑

i=1

N
(
r,

1

f − ai
)

+ S(r, f).
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Proof. By the transformation

F =
f − a2
f − a1

· a3 − a1
a3 − a2

,

we just need to prove the theorem in the case that a1 = ∞, a2 = 0, a3 = 1,

a4, a5 6≡ 0, 1,∞, a4 6≡ a5. If one of a4 and a5 is constant, then we need to prove

nothing according to the second main theorem for constants. Thus, we may

assume that both a4 and a5 are nonconstant small functions of f. Set

H =

∣∣∣∣∣∣
ff ′ f ′ f(f − 1)
a4a
′
4 a′4 a4(a4 − 1)

a5a
′
5 a′5 a5(a5 − 1)

∣∣∣∣∣∣ (3.1)

By a simple computation, we get

H =f(f − 1)a4(a4 − 1)a5(a5 − 1)
[(a′4
a4
− a′5
a5

)( f ′

f − 1
− a′5
a5 − 1

)
−
( a′4
a4 − 1

− a′5
a5 − 1

)(f ′
f
− a′5
a5

)]
. (3.2)

We claim that H 6≡ 0. Indeed, on the contrary, assume that H ≡ 0. Since f is not

constant and a4, a5 6≡ 0, 1, it follows from (3.1) that(a′4
a4
−a
′
5

a5

) f ′

f − 1
−
( a′4
a4 − 1

− a′5
a5 − 1

)f ′
f
≡
(a′4
a4
−a
′
5

a5

) a′5
a5 − 1

−
( a′4
a4 − 1

− a′5
a5 − 1

)a′5
a5
.

(3.3)

We now distinguish four cases

Case 1.
a′4
a4
≡ a′5

a5
. It follows from (3.3) that

a′4
a4−1 ≡

a′5
a5−1 or f ′

f ≡
a′5
a5
. If

a′4
a4−1 ≡

a′5
a5−1 then a4 and a5 are constants, which contradicts our assumption.

This means f ′

f ≡
a′5
a5
. Hence, we get f = ca5, where c is a constant. This is a

contradiction.

Case 2.
a′4

a4−1 ≡
a′5

a5−1 . By an argument similar to Case 1, we also get a contra-

diction.

Case 3.
a′4
a4
− a′5

a5
≡ a′4

a4−1 −
a′5

a5−1 6≡ 0. It follows from (3.3) that

f ′

f − 1
− f ′

f
≡ a′5
a5 − 1

− a′5
a5
,

which implies

f − 1

f
≡ Ca5 − 1

a5
,

where C is a constant. Thus, we obtain

1

f
≡ 1− Ca5 − 1

a5
.
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It follows that

T (r, f) = T
(
r,

1

f

)
+O(1) = S(r, f).

This is a contradiction.

Case 4.
a′4
a4
6≡ a′5

a5
,

a′4
a4−1 6≡

a′5
a5−1 and

a′4
a4
− a′5

a5
6≡ a′4

a4−1 −
a′5

a5−1 . Then, it follows

from (3.3) that the zeros of f − 1 can only occur at the zeros or 1−points or

the poles of aj , (j = 4, 5), or the zeros of
a′4
a4
− a′5

a5
. Similary, the zeros of f can

only occur at the zeros or 1−points or the poles of aj , (j = 4, 5), or the zeros

of
a′4

a4−1 −
a′5

a5−1 . Furthermore, from (3.3), we can also see that the poles of f can

only occur at the zeros or 1−points or the poles of aj , (j = 4, 5), or the zeros of
a′4
a4
− a′5

a5
− a′4

a4−1 +
a′5

a5−1 . Therefore, we get

N(r, f) +N
(
r,

1

f

)
+N

(
r,

1

f − 1

)
= S(r, f). (3.4)

By (3.4) and applying the Second Main Theorem for f and 0, 1,∞, we have

T (r, f) ≤ N(r, f) +N
(
r,

1

f

)
+N

(
r,

1

f − 1

)
− log r +O(1) = S(r, f).

This is a contradiction again.

Thus, we must have H 6≡ 0.

Given a real number 0 < r <∞. Let

δ(r) = min{1, |a4|r, |a5|r, |a4 − 1|r, |a5 − 1|r, |a4 − a5|r}.

Then, we have

log+
1

δ(r)
≤ log+ max{1, 1

|a4|r
,

1

|a5|r
,

1

|a4 − 1|r
,

1

|a5 − 1|r
,

1

|a4 − a5|r
}

≤ log+
(

1 +
1

|a4|r
+

1

|a5|r
+

1

|a4 − 1|r
+

1

|a5 − 1|r
+

1

|a4 − a5|r

)
≤ log+

1

|a4|r
+ log+

1

|a5|r
+ log+

1

|a4 − 1|r
+ log+

1

|a5 − 1|r

+ log+
1

|a4 − a5|r
+ log 6

= m
(
r,

1

a4

)
+m

(
r,

1

a5

)
+m

(
r,

1

a4 − 1

)
+m

(
r,

1

a5 − 1

)
+m

(
r,

1

a4 − a5
)

+ log 6

= S(r, f).

We first consider the case when

|f − aj |r >
1

2
δ(r),
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for all 2 ≤ j ≤ 5. In this case,

m
(
r,

1

f

)
+m

(
r,

1

f − 1

)
+m

(
r,

1

f − a4
)

+m
(
r,

1

f − a5
)
< 5 log+

1

δ(r)
+O(1)

= S(r, f). (3.5)

Now let i, 2 ≤ i ≤ 5, be the index among {2, 3, 4, 5} such that

|f − ai|r ≤
1

2
δ(r).

Then for any j 6= i, 2 ≤ j ≤ 5, we have

δ(r) ≤ |ai − aj |r ≤ |f − ai|r + |f − aj |r ≤
1

2
δ(r) + |f − aj |r,

so

|f − aj |r ≥
1

2
δ(r).

Therefore, for j 6= i, we have

5∑
j=2
j 6=i

m
(
r,

1

f − aj
)

=
5∑

j=2
j 6=i

log+
1

|f − aj |r
≤ 3 log+

1

δ(r)
.

Combining (3.5) and the above inequality, we get

5∑
j=2
j 6=i

m
(
r,

1

f − aj
)

= S(r, f). (3.6)

On the other hand, for 2 ≤ i ≤ 5, we can write

ff ′ = (f − ai)(f ′ − a′i) + a′i(f − ai) + ai(f
′ − a′i) + aia

′
i,

f ′ = (f ′ − a′i) + a′i,

f(f − 1) = f2 − f = (f − ai)2 + (2ai − 1)(f − ai) + a2i − ai.

By substituting the above equalities into (3.1) and using the determinant’s prop-

erties, we get

H =

∣∣∣∣∣∣
gi f ′ − a′i hi
a4a
′
4 a′4 a4(a4 − 1)

a5a
′
5 a′5 a5(a5 − 1)

∣∣∣∣∣∣ , (3.7)

where

gi = (f − ai)(f ′ − a′i) + a′i(f − ai) + ai(f
′ − a′i),

hi = (f − ai)2 + (2ai − 1)(f − ai)

for 2 ≤ i ≤ 5 (note that a2 = 0, a3 = 1). By the definition of δ(r), we have

δ(r) ≤ 1 + |ai|r. Hence,

log+ δ(r) ≤ log+(1 + |ai|r) ≤ log+ |ai|r + log 2 = m(r, ai) + log 2 = S(r, f).
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Thus, it follows from (3.7) and the Logarithmic Derivative Lemma that

log+
∣∣∣ H

f − ai

∣∣∣
r
≤ log+

∣∣∣f ′ − a′i
f − ai

∣∣∣
r

+ log+ |f − ai|r

+O(log+ |ai|r + log+ |a′i|r + log+ |a4|r + log+ |a′4|r
+ log+ |a5|r + log+ |a′5|r)

≤ m
(f ′ − a′i
f − ai

)
+ log+ δ(r) + S(r, f)

= S(r, f).

Hence, we get

m
(
r,

1

f − ai
)

= log+
1

|f − ai|r
≤ log+

∣∣∣ H

f − ai

∣∣∣
r

+ log+
∣∣∣ 1

H

∣∣∣
r

≤ m
(
r,

1

H

)
+ S(r, f). (3.8)

It follows from (3.5), (3.7) and (3.8) that in any case, we have

m
(
r,

1

f

)
+m

(
r,

1

f − 1

)
+m

(
r,

1

f − a4
)

+m
(
r,

1

f − a5
)
≤ m

(
r,

1

H

)
+ S(r, f).

(3.9)

Hence, by the First Main Theorem, we get

4T (r, f) ≤ N
(
r,

1

f

)
+N

(
r,

1

f − 1

)
+N

(
r,

1

f − a4
)

+N
(
r,

1

f − a5
)

+ T (r,H)−N
(
r,

1

H

)
+ S(r, f). (3.10)

On the other hand, suppose that z0 be a zero of f −ai, (2 ≤ i ≤ 5) of order s > 1

which is not a pole of a4 or a5. Then, it follows from (3.7) that z0 is also a zero of

H of order at least s− 1. Hence, from (3.10) and the above observations, we get

4T (r, f) ≤ N
(
r,

1

f

)
+N

(
r,

1

f − 1

)
+N

(
r,

1

f − a4
)

+N
(
r,

1

f − a5
)

+ T (r,H) + S(r, f). (3.11)

From (3.2), we have

m(r,H) ≤ 2m(r, f) + S(r, f),

N(r,H) ≤ 2N(r, f) +N(r, f) + S(r, f).

Hence, we get

T (r,H) ≤ 2T (r, f) +N(r, f) + S(r, f). (3.12)

Combining (3.11) and (3.12), we obtain

2T (r, f) ≤ N
(
r,

1

f

)
+N

(
r,

1

f − 1

)
+N

(
r,

1

f − a4
)

+N
(
r,

1

f − a5
)

+ S(r, f).
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This completes the proof of Lemma 2. �

Proof of Theorem 1. By Lemma 2, for every subset {i1, . . . , i5} of {1, . . . , q} such

that 1 ≤ i1 < · · · < i5 ≤ q, we have

2T (r, f) ≤
5∑

s=1

N
(
r,

1

f − ais

)
+ S(r, f). (3.13)

It is easily seen that the number of such inequalities is C5
q . Summing up of (3.13)

over all subsets {i1, . . . , i5} of {1, . . . , q} as above, we get

2C5
qT (r, f) ≤

∑
{i1,...,i5}⊂{1,...,q}
1≤i1<···<i5≤q

(
N
(
r,

1

f − ai1

)
+N

(
r,

1

f − ai2

)
+N

(
r,

1

f − ai3

)

+N
(
r,

1

f − ai4

)
+N

(
r,

1

f − ai5

))
+ S(r, f). (3.14)

In (3.14), for each index ik, the number of terms N
(
r, 1

f−aik

)
is C4

q−1. Hence, from

(3.14), we get

2C5
qT (r, f) ≤ C4

q−1

q∑
i=1

N
(
r,

1

f − ai
)

+ S(r, f).

It follows that

2q

5
T (r, f) ≤

q∑
i=1

N
(
r,

1

f − ai
)

+ S(r, f).

This completes the proof of Theorem 1. �

4. Proof of Theorem 2

To prove Theorem 2, we need to prove the following lemma.

Lemma 3. Let f and g be nonconstant meromorphic functions on K and a1, . . . , aq

be q distinct small functions with respect to f and g. Let k1, . . . , kq be q positive

integers or +∞. Suppose that

E(aj , kj , f) = E(aj , kj , g) (j = 1, . . . , q).

If f 6≡ g, then for every subset {i1, i2, i3, i4} of {1, . . . , q}, we have

∑
j∈{1,...,q}\{i1,...,i4}

Nkj)

(
r,

1

f − aj
)
≤

4∑
s=1

(
N (kis+1

(
r,

1

f − ais

)
+N (kis+1

(
r,

1

g − ais

))
+ S(r, f) + S(r, g).
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Proof. Without losing generality, we just need to prove that

q∑
i=5

Nki)

(
r,

1

f − ai
)
≤

4∑
j=1

(
N (kj+1

(
r,

1

f − aj
)

+N (kj+1

(
r,

1

g − aj
))

+ S(r, f) + S(r, g). (4.1)

If
∑q

i=5Nki)

(
r, 1

f−ai

)
= S(r, f) + S(r, g), then (4.1) obviously holds. Thus, in

the following we may assume that

q∑
i=5

Nki)

(
r,

1

f − ai
)
6= S(r, f) + S(r, g). (4.2)

By using the transformation

L(w) =
w − a1
w − a2

· a3 − a2
a3 − a1

and considering two functions F = L(f), G = L(g) if necessary, we may assume

that a1 = 0, a2 = ∞, a3 = 1 and a4, . . . , aq are distinct small functions with

respect to f and g, ai 6≡ 0, 1,∞ for i = 4, . . . , q.

Set

M :=
f ′(a′4g − a4g′)(f − g)

f(f − 1)g(g − a4)
− g′(a′4f − a4f ′)(f − g)

g(g − 1)f(f − a4)
. (4.3)

Then we have

M =
(f − g)Q

f(f − 1)(f − a4)g(g − 1)(g − a4)
, (4.4)

where

Q = f ′(a′4g − a4g′)(f − a4)(g − 1)− g′(a′4f − a4f ′)(g − a4)(f − 1)

= a′4ff
′g2 − a′4ff ′g − a4(a4 − 1)ff ′g′ − a4a′4f ′g2 + a4a

′
4f
′g − a′4f2gg′

+ a′4fgg
′ + a4(a4 − 1)f ′gg′ + a4a

′
4f

2g′ − a4a′4fg′. (4.5)

Suppose that M ≡ 0. Then from (4.3) we have

f ′(a′4g − a4g′)(f − g)

f(f − 1)g(g − a4)
≡ g′(a′4f − a4f ′)(f − g)

g(g − 1)f(f − a4)
. (4.6)

If a4 is a constant then f ≡ g, which contradicts our assumption. Thus, a4 is not

a constant. It follows from (4.6) that

(f − 1)(g − a4)
(g − 1)(f − a4)

− 1 ≡ f ′(a′4g − a4g′)
g′(a′4f − a4f ′)

− 1,

which implies

(f − g)(1− a4)
(g − 1)(f − a4)

≡ a′4[(f
′ − g′)g − (f − g)g′]

g′(a′4f − a4f ′)
.
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This yield that
f ′ − g′

f − g
≡ (1− a4)g′(a′4f − a4f ′)

a′4g(g − 1)(f − a4)
+
g′

g
. (4.7)

It follows from (4.2) that there exists a point z0 that is a common zero of f − aj
and g − aj , and it is not neither a zero nor a pole of a4, a

′
4, aj , aj − 1, aj − a4, for

any 5 ≤ j ≤ q. Then, z0 must be a pole of the left hand side of (4.7), and not be

a pole of the right hand side of (4.7). This is a contradiction. Thus M 6≡ 0.

Suppose that z1 is a common zero of f − aj and g − aj and it is not neither a

zero nor a pole of a4, aj , aj − 1, aj − a4 for 5 ≤ j ≤ q. Then, z1 is a zero of f − g
and is not a pole of

Q

f(f − 1)(f − a4)g(g − 1)(g − a4)
,

which implies that z1 is a zero of M. Since E(aj , kj , f) = E(aj , kj , g) for any

j = 1, . . . , q, we have
q∑

i=5

Nki)

(
r,

1

g − ai
)

=

q∑
i=5

Nki)

(
r,

1

f − ai
)

≤ N
(
r,

1

M

)
+ S(r, f) + S(r, g)

≤ m(r,M) +N(r,M) + S(r, f) + S(r, g). (4.8)

We will estimate m(r,M). From (4.3) we get

M =
f ′

f − 1

a′4g − a4g′

g(g − a4)
−
( f ′

f − 1
− f ′

f

)a′4g − a4g′
g − a4

+
g′

g − 1

a′4f − a4f ′

f(f − a4)
−
( g′

g − 1
− g′

g

)a′4f − a4f ′
f − a4

=
f ′

f − 1

(g′
g
− g′ − a′4
g − a4

)
−
( f ′

f − 1
− f ′

f

)(
a′4 − a4

g′ − a′4
g − a4

)
g′

g − 1

(f ′
f
− f ′ − a′4
f − a4

)
−
( g′

g − 1
− g′

g

)(
a′4 − a4

f ′ − a′4
f − a4

)
. (4.9)

Combining (4.9) and lemma of the logarithmic derivative, we obtain

m(r,M) = S(r, f) + S(r, g). (4.10)

Next, we estimate the counting function N(r,M). It follows from (4.3) that the

poles of M can only occur at the zeros of f − ai, and g− ai with i = 1, 2, 3, 4 and

the poles of a′4, a4. Remind that a1 = 0, a2 = ∞, a3 = 1 and the zeros of f −∞
mean the poles of 1

f . We consider all the following possibilities.

Case 1: z is a pole of a′4 or a4. We have ord∞a′4
(z) = ord∞a4(z)+1, where ord∞a (z)

denotes the order of a pole of a function a at z. From the formula of M in (4.3),
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we obtain

ord∞M (z) ≤ ord∞a4(z) + 2 ≤ 3ord∞a4(z).

Case 2: For each i = 1, 3 or 4, assume that z is a common zero of f − ai

and g − ai, but it is not a pole of a4. Then z is a zero of f − g of order at

least min{ord0
f−ai(z), ord0

g−ai(z)}. From (4.5), z is a zero of Q of order at least

ord0
f−ai(z) + ord0

g−ai(z)− 1. From (4.4) we have

ord0
M (z) ≥ min{ord0

f−ai(z), ord0
g−ai(z)}+ ord0

f−ai(z) + ord0
g−ai(z)− 1

− (ord0
f−ai(z) + ord0

g−ai(z))

≥ min{ord0
f−ai(z), ord0

g−ai(z)} − 1

≥ 0.

Hence, z is not a pole of M.

Case 3: z is a common pole of f and g but it is not a pole of a4. Then,

from (4.5), z is a pole of Q of order at most 2ord∞f (z) + 2ord∞g (z) + 1. Then,

z is a pole of f − g of order max{ord∞f (z), ord∞g (z)}. Hence, from (4.4) we see

that z is a pole of the numerator of M of order at most 2ord∞f (z) + 2ord∞g (z) +

1 + max{ord∞f (z), ord∞g (z)} and it is a pole of the denominator of M of order

3ord∞f (z) + 3ord∞g (z). Since

2ord∞f (z) + 2ord∞g (z) + 1 + max{ord∞f (z), ord∞g (z)} − (3ord∞f (z) + 3ord∞g (z))

= 1 + max{ord∞f (z), ord∞g (z)} − (ord∞f (z) + ord∞g (z))

≤ 0,

we see that z is not a pole of M.

Case 4: Assume that z is a zero only of either f − ai or g − ai, i = 1, 2, 3 or 4

and z is not a pole of a4. By the hypothesis

E(aj , kj , f) = E(aj , kj , g) (j = 1, . . . , q),

all zeros order at most k of f − ai will be zeros of g − ai. Hence, in this case we

may assume z to be either a zero of f − ai or a zero of g − ai of order at least

k + 1. The formula (4.9) can be written in terms

M =

4∑
i,j=1

a
((f − ai)′

f − ai
.
(g − aj)′

g − aj
)

when a is either a4 or a′4. For each term of the form fi := (f−ai)′
f−ai we have

ord∞fi (z) = min{1, ord0
f−ai(z)} := ord

0
f−ai(z),



13

which implies

ord∞M (z) ≤ max
i,j=1,2,3,4

{ord
0
f−ai(z) + ord

0
g−aj (z)},

So, from the assumption and the above observations, we get

N(r,M) ≤
4∑

j=1

(
N (kj+1

(
r,

1

f − aj
)
+N (kj+1

(
r,

1

g − aj
))

+S(r, f)+S(r, g). (4.11)

By combining (4.8), (4.10) and (4.11), we get (4.1). The proof of Lemma 3 is

completed. �

Proof of Theorem 2. Suppose that f 6≡ g. By Lemma 3, for every subset {i1, . . . , i4}
of {1, . . . , q}, we have

q∑
j=1

Nkj)

(
r,

1

f − aj
)
−

4∑
s=1

Nkis )

(
r,

1

f − ais

)
≤

4∑
s=1

(
N (kis+1

(
r,

1

f − ais

)
+N (kis+1

(
r,

1

g − ais

))
+ S(r, f) + S(r, g). (4.12)

Taking summing up of (4.12) over all subsets {i1, . . . , i4} of {1, . . . , q}, we get

C4
q

q∑
j=1

Nkj)

(
r,

1

f − aj
)
−

∑
{i1,...,i4}⊂{1,...,q}
1≤i1<···<i4≤q

4∑
s=1

Nkis )

(
r,

1

f − ais

)

≤
∑

{i1,...,i4}⊂{1,...,q}
1≤i1<···<i4≤q

4∑
s=1

(
N (kis+1

(
r,

1

f − ais

)
+N (kis+1

(
r,

1

g − ais

))
+ S(r, f) + S(r, g).

In the above inequality, for each index is, the number of terms N
(
r, 1

f−ais

)
is

C3
q−1. Hence, it follows that

(q − 4)

q∑
j=1

Nkj)

(
r,

1

f − aj
)
≤4

q∑
j=1

(
N (kj+1

(
r,

1

f − aj
)

+N (kj+1

(
r,

1

g − aj
))

+ S(r, f) + S(r, g).

By an argument similar, we have

(q − 4)

q∑
j=1

Nkj)

(
r,

1

g − aj
)
≤4

q∑
j=1

(
N (kj+1

(
r,

1

f − aj
)

+N (kj+1

(
r,

1

g − aj
))

+ S(r, f) + S(r, g).
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Hence, we get

(q − 4)

q∑
j=1

(
N
(
r,

1

f − aj
)

+N
(
r,

1

g − aj
))

≤ (q + 4)

q∑
j=1

(
N (kj+1

(
r,

1

f − aj
)

+N (kj+1

(
r,

1

g − aj
))

+ S(r, f) + S(r, g).

(4.13)

By Theorem 1, we have

2q

5
(T (r, f) + T (r, g)) ≤

q∑
j=1

(
N
(
r,

1

f − aj
)

+N
(
r,

1

g − aj
))

+ S(r, f) + S(r, g). (4.14)

Combining (4.13) and (4.14), we get

2q(q − 4)

5
(T (r, f) + T (r, g)) ≤ (q + 4)

q∑
j=1

(
N (kj+1

(
r,

1

f − aj
)

+N (kj+1

(
r,

1

g − aj
))

+ S(r, f) + S(r, g). (4.15)

On the other hand, we have

q∑
j=1

(
N (kj+1

(
r,

1

f − aj
)

+N (kj+1

(
r,

1

g − aj
))

≤
q∑

j=1

1

kj + 1

(
N(kj+1

(
r,

1

f − aj
)

+N(kj+1

(
r,

1

g − aj
))

≤
q∑

j=1

1

kj + 1
(T (r, f) + T (r, g)). (4.16)

The inequalities (4.15) and (4.16) imply(2q(q − 4)

5(q + 4)
−

q∑
j=1

1

kj + 1

)
(T (r, f) + T (r, g)) ≤ S(r, f) + S(r, g).

Hence, when
∑q

j=1
1

kj+1 <
2q(q−4)
5(q+4) , we have a contradiction. Thus, f ≡ g. The

proof of Theorem 2 is completed. �

5. Proof of Theorem 3

First, we prove the following lemma.
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Lemma 4. Let f be a nonconstant meromorphic function on K. Let a1, . . . , aq

be q distinct small functions with respect to f. Let k be a positive integer or +∞.
Then

q∑
i=1

N (k+1

(
r,

1

f − ai
)
≤ 3q

5k
T (r, f) + S(r, f).

Proof. If k = +∞, then N (k+1

(
r, 1

f−ai

)
= 0. Therefore, the lemma is always true.

From now, we may assume that k is finite.

For each 1 ≤ i ≤ q, we have

kN (k+1

(
r,

1

f − ai
)

+N
(
r,

1

f − ai
)

= (k + 1)N (k+1

(
r,

1

f − ai
)

+Nk)

(
r,

1

f − ai
)

≤ N(k+1

(
r,

1

f − ai
)

+Nk)

(
r,

1

f − ai
)

= N
(
r,

1

f − ai
)
≤ T (r, f) + S(r, f).

Hence, we get

kN (k+1

(
r,

1

f − ai
)
≤ T (r, f)−N

(
r,

1

f − ai
)

+ S(r, f).

Combining this and Theorem 1, we obtain

k

q∑
i=1

N (k+1

(
r,

1

f − ai
)
≤ 3q

5
T (r, f) + S(r, f).

This completes the proof of Lemma. �

Proof of Theorem 3. Suppose that f 6≡ g. By arguments similar to the inequality

(4.15) in the proof of Theorem 2, we get

2q(q − 4)

5
(T (r, f) + T (r, g)) ≤(q + 4)

q∑
j=1

(
N (k+1

(
r,

1

f − aj
)

+N (k+1

(
r,

1

g − aj
))

+ S(r, f) + S(r, g). (5.1)

By Lemma 4, we have
q∑

j=1

(
N (k+1

(
r,

1

f − aj
)

+N (k+1

(
r,

1

g − aj
))
≤3q

5k
(T (r, f) + T (r, g))

+ S(r, f) + S(r, g). (5.2)

Combining (5.1) and (5.2), we obtain

q

5

(
2(q − 4)− 3(q + 4)

k

)
(T (r, f) + T (r, g)) ≤ S(r, f) + S(r, g).

Thus, when k > 3(q+4)
2(q−4) , we have a contradiction. Hence, f ≡ g. �
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Proof of Corollary 1. Suppose that f 6≡ g. Applying Lemma 3 with k = ∞, we

show that for every subset {i1, . . . , i4} of {1, . . . , 5}, we have

N
(
r,

1

f − aj
)

= S(r, f) + S(r, g)

for j ∈ {1, . . . , 5} \ {i1, . . . , i4}. Hence, we obtain

5∑
j=1

N
(
r,

1

f − aj
)
−

4∑
s=1

N
(
r,

1

f − ais

)
= S(r, f) + S(r, g) (5.3)

Summing up of (5.3) over all subsets {i1, . . . , i4} of {1, . . . , 5}, we get

C4
5

q∑
j=1

N
(
r,

1

f − aj
)
−

∑
{i1,...,i4}⊂{1,...,5}
1≤i1<···<i4≤5

4∑
s=1

N
(
r,

1

f − ais

)
= S(r, f) + S(r, g).

In the above equality, for each index is, the number of terms N
(
r, 1

f−ais

)
is C3

4.

Hence, it follows that

5∑
j=1

N
(
r,

1

f − aj
)

= S(r, f) + S(r, g).

By an argument similar, we have

5∑
j=1

N
(
r,

1

g − aj
)

= S(r, f) + S(r, g).

Hence, we get

5∑
j=1

(
N
(
r,

1

f − aj
)

+N
(
r,

1

g − aj
))

= S(r, f) + S(r, g). (5.4)

By Theorem 1, we have

2(T (r, f) + T (r, g)) ≤
5∑

j=1

(
N
(
r,

1

f − aj
)

+N
(
r,

1

g − aj
))

+ S(r, f) + S(r, g). (5.5)

Combining (5.4) and (5.5), we get

2(T (r, f) + T (r, g)) ≤ S(r, f) + S(r, g).

Hence, we have a contradiction. Thus, f ≡ g. The proof of Corollary 1 is com-

pleted. �
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