Phùng Hồ Hải
GS. TSKH. NCVCC
Phòng Lý thuyết số
|
Liên hệ
Phòng làm việc: 406, Nhà A6
Điện thoại: +84 24 37563474
Email: phung AT math.ac.vn
Lý lịch khoa học
Năm sinh: 1970
Nơi sinh: Hanoi
- Đại học: 1992, Moscow, Liên xô (cũ)
- Tiến sĩ: 1996, Munich, CHLB Đức
- Tiến sĩ khoa học: 2005, Essen, CHLB Đức
- Phó giáo sư: 2006
- Giáo sư: 2012
Chuyên ngành: Đại số - Hình học đại số
Các vị trí công tác đã qua
- Viện Trưởng Viện Toán học 2017 - 2022
- Phó Viện trưởng Viện Toán học 2012 - 2017
- Phó tổng biên tập tạp chí Acta Mathematica Vietnamica 2008-2020
- Tổng thư ký Hội toán học Việt Nam: 2013-2018
Các lĩnh vực quan tâm
- Tensor categories, Tannaka duality
- Quantum groups, Hopf algebras
- Fundamental groupschemes
DANH SÁCH CÔNG TRÌNH
Danh sách trong Mathscinet
Danh sách gần đây1 | Phùng Hồ Hải, João Pedro dos Santos, Phạm Thanh Tâm, Algebraic theory of formal regular-singular connections with parameters, Rendiconti del Seminario Matematico della Università di Padova, Volume 152 (2024) pages 171–228, (SCI-E, Scopus). |
2 | Phùng Hồ Hải, João Pedro dos Santos, Phạm Thanh Tâm, Đào Văn Thịnh, Prolongation of regular-singular connections on punctured affine line over a Henselian ring, Communications in Algebra, Volume 52, 2024 - Issue 8, Pages 3194-3208, (SCI-E, Scopus). |
3 | Indranil Biswas, Phùng Hồ Hải, Joao Pedro dos Santos, Connections on trivial vector bundles over projective schemes Comptes Rendus. Mathématique, Volume 362 (2024), pp. 309-325, (SCI-E, Scopus). |
4 | Phùng Hồ Hải, João Pedro dos Santos, Regular-singular connections on relative complex schemes, Annali della Scuola Normale Superiore di Pisa, Classe di Scienze, 2023: VOL. XXIV, ISSUE 3, (SCI-E, Scopus). |
5 | Phùng Hồ Hải, João Pedro dos Santos, Finite torsors on projective schemes defined over a discrete valuation ring, Algebraic Geometry, 10, (2023), page 1-40, (SCI-E, Scopus). |
6 | Indranil Biswas, Phùng Hồ Hải, João Pedro Dos Santos, On the fundamental group schemes of certain quotient varieties, Tohoku Mathematical Journal, 73(2021), 565-595, (SCI-E, Scopus). Corrected version: see link (https://arxiv.org/abs/1809.06755). |
7 | Phùng Hồ Hải, João Pedro dos Santos, On the Structure of Affine Flat Group Schemes Over Discrete Valuation Rings, II , International Mathematics Research Notices, 12 (2021), Pages 9375–9424, (SCI(-E), Scopus). |
8 | Nguyên Luong Thái Bình, Nguyên Thi Phuong Dung, Phùng Hồ Hải, Jacobi-Trudi Type Formula for Character of Irreducible Representations of gl(m|1), Acta Mathematica Vietnamica, 44 (2019), pp 603–615, Scopus. |
9 | Phùng Hồ Hải, João Pedro P. dos Santos, The action of the etale fundamental group scheme on the connected component of the essentially finite one, Mathematische Nachrichten, 291 (2018),1733–1742, SCI(-E); Scopus. |
10 | Nguyen Dai Duong, Phùng Hồ Hải, João Pedro P. Dos Santos, On the structure of affine flat group schemes over discrete valuation rings, Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, XVIII (2018), 977-1032, SCI(-E); Scopus. |
11 | Nguyen Dai Duong, Phùng Hồ Hải, Tannakian duality over Dedekind rings and applications, Mathematische Zeitschrift, 288 (2018),1103–1142, SCI(-E); Scopus. |
12 | Nguyen Dai Duong, Phùng Hồ Hải, Nguyen Huy Hung, On the flatness and the projectivity over Hopf subalgebras of Hopf algebras over Dedekind rings, Journal of Algebra, 478 (2017), 237–260,SCI(-E); Scopus. |
13 | Phùng Hồ Hải, On an injectivity lemma in the proof of Tannakian duality, Journal of Algebra and Its Applications, 15 (2016),SCI(-E); Scopus. |
14 | Phùng Hồ Hải, Gauss-Manin stratification and stratified fundamental group schemes, Annales de l'institut Fourier, 63 (2013), 2267-2285, doi: 10.5802/aif.2829, SCI(-E); Scopus. |
15 | Nguyen Thi Phuong Dung, Phùng Hồ Hải, Nguyen Huy Hung, Construction of irreducible representations of the quantum super group $GL_q(3\mid 1)$, Acta Mathematica Vietnamica 36 (2011), 215 -- 229, Scopus. |
16 | Phùng Hồ Hải, H. Esnault, Two small remarks on Nori fundamental group scheme, In: Advanced Studies in Pure Mathematics, 60 (2010), 237 -- 243. |
17 | Phùng Hồ Hải, B. Kriegk and M. Lorenz, $N$-homogeneous superalgebras, J. Noncommut. Geom. 2 (2008), 1 - 51, preprint arXiv:0704.1888. |
18 | H. Esnault, Phùng Hồ Hải, Packets in Grothendieck's section conjecture, Adv. Math. 218 (2008), 395 - 416. |
19 | H. Esnault, Phùng Hồ Hải, X. Sun, On Nori's fundamental group scheme. In: Geometry and dynamics of groups and spaces, 377 - 398, Progr. Math., 265, Birkhọuser, Basel, 2008.preprint arXiv:math/0605645. |
20 | Phùng Hồ Hải, Tannaka-Krein duality for Hopf algebroids, Israel J. Math. 167 (2008), 193 - 225, preprint arXiv:math/0206113. |
21 | Phùng Hồ Hải, H. Esnault, The fundamental groupoid scheme and applications, Annales de l’Institut Fourier, 58 (2008), 2381-2412. |
22 | Phùng Hồ Hải, Martin Lorenz, Koszul algebras and the quantum MacMahon master theorem, Bull. Lond. Math. Soc. 39 (2007), 667 - 676, preprint arXiv:math/0603169. |
23 | Hélène Esnault, Phùng Hồ Hải, The Gauss-Manin connection and Tannaka duality, Int. Math. Res. Not. 2006, Art. ID 93978, 35 pp. |
24 | Phùng Hồ Hải, On the representation categories of matrix quantum groups of type A, Vietnam J. Math. 33 (2005), 357 - 367. |
25 | Phùng Hồ Hải, The homological determinant of quantum groups of type $A$. Proc. Amer. Math. Soc. 133 (2005), 1897 - 1905 (electronic), preprint arXiv:math/0305115. |
26 | Nguyen Thi Phuong Dung, Phùng Hồ Hải, Irreducible representations of quantum linear groups of type A1|0, J. Algebra 282 (2004), 809 - 830. |
27 | Phùng Hồ Hải, Nguyen Phuong Dung, On the Poincare series of quadratic algebras associated to Hecke symmetries, Int. Math. Res. Not. 2003, N0 40, 2193 - 2203. |
28 | Phùng Hồ Hải, On a theorem of Deligne on characterization of Tannakian categories. In: Arithmetic fundamental groups and noncommutative algebra (Berkeley, CA, 1999), 517 - 531, Proc. Sympos. Pure Math., 70, Amer. Math. Soc., Providence, RI, 2002. |
29 | Phùng Hồ Hải, An embedding theorem for abelian monoidal categories, Compositio Math. 132 (2002), 27 - 48, preprint arXiv:math/0004160. Corrigendum: ``An embedding theorem for abelian monoidal categories'' [Compositio Math. 132 (2002), N0 1, 27 - 48]. Compos. Math. 144 (2008), 1349 - 1350 |
30 | Phùng Hồ Hải, Characters of quantum groups of type $A_n$, Comm. Algebra 30 (2002), 1085 - 1117, preprint arXiv:math/9807045. |
31 | Phùng Hồ Hải, Realizations of quantum hom-spaces, invariant theory, and quantum determinantal ideals, J. Algebra 248 (2002), 50 - 84. |
32 | Phùng Hồ Hải, The integral on quantum supergroups of type AR|S, Asian J. Math. 5 (2001), 751 - 769. |
33 | Phùng Hồ Hải, Splitting comodules over Hopf algebras and application to representation theory of quantum groups of type A0|0. J. Algebra 245 (2001), 20 - 41. |
34 | Phùng Hồ Hải, On matrix quantum groups of type A_n. Internat. J. Math. 11 (2000), 1115 - 1146. |
35 | Phùng Hồ Hải, Hecke symmetries. Commutative algebra, homological algebra and representation theory (Catania/Genoa/Rome, 1998). J. Pure Appl. Algebra 152 (2000), 109 - 121. |
36 | Phùng Hồ Hải, On structure of the quantum supergroups GLq(m|n). J. Algebra 211 (1999), 363 - 383. |
37 | Phùng Hồ Hải, Poincaré series of quantum spaces associated to Hecke operators. Acta Math. Vietnam. 24 (1999), 235 - 246. |
38 | Phùng Hồ Hải, Central bialgebras in braided categories and coquasitriangular structures. J. Pure Appl. Algebra 140 (1999), 229 - 250. |
39 | Phùng Hồ Hải, Koszul property and Poincaré series of matrix bialgebra of type A_n. J. Algebra 192 (1997),734 - 748. |
40 | Phùng Hồ Hải, Poincaré series of quantum matrix bialgebras determined by pairs of quantum spaces. Comm. Algebra 23 (1995), 879 - 890. |
1 | IMH20240101, Joao Pedro dos Santos, Phùng Hồ Hải, Nguyễn Đăng Hợp, Fiber criteria for flatness and homomorphisms of flat affine group schemes |
2 | IMH20230402, Trần Phan Quốc Bảo, Võ Quốc Bảo, Phùng Hồ Hải, Tannakian duality and Gauss-Manin connections for a family of curves |
Tin tức nổi bật
28/10/24, Hội nghị, hội thảo: School and Workshop “Selected topics in Arithmetic Algebraic Geometry” |
01/12/24, Hội nghị, hội thảo: Hội thảo quốc tế về Đại số giao hoán và mối liên quan với Tổ hợp |