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ABSTRACT. Let X −→ SpecR be a smooth family of smooth projective schemes parameterized
by a smooth affine curve S over a field k of characteristic 0. For a flat connection on X /k we
compare its (relative) de Rham cohomology equipped with the Gauss-Manin connection and the
group cohomology determined in terms of Tannakian duality.

1. INTRODUCTION

Let X /k be a separated scheme, x ∈ X ×k k̄ be a k̄-point of X ×k k̄, where k̄ an algebraic
closure of k. Grothendieck defines in [SGA1] the etale fundamental group πet(X , x) which is
an algebraic analog of the topological fundamental group of a (arc-wise) connected topological
space. This group is a profinite group which classifies Galois coverings of X (with a distin-
guished point above x). Then Grothendieck deduces the following exact sequences.

• The fundamental exact sequence which relates the etale fundamental groups of X , X̄ :=
X ×k k̄ and the Galois group Gal(k̄/k):

1 −→πet(X̄ , x) −→πet(X , x) −→ Gal(k̄/k) −→ 1.

• The homotopy exact sequence which is associated to each proper map f : X −→ S (of
separated schemes over k) with connected fibers:

πet(Xs , x) −→πet(X , x) −→πet(S, s) −→ 1,

where s = f (x), Xs = f −1(s).

There is another natural algebraic replacement of the topological fundamental group mo-
tivated by the Riemann-Hilbert correspondence. Roughly speaking, on a complex manifold,
there is a correspondence between systems of analytic linear differential equations, i.e. OX -
coherent modules with flat connection, and local systems on X , i.e. finite dimensional complex
linear representations of the topological fundamental group of X . Now for a smooth scheme X
over a field k of characteristic 0, let x be a k-rational point of X . Consider the category of flat
connections on X /k equipped with the fiber functor at x, i.e. to associate to each connection
its fiber at x. Tannakian duality applied yields a pro-algebraic affine group scheme, called the
differential fundamental group of X at x.

Let f : X −→ SpecR be a smooth, projective morphism of smooth schemes over k. Then
there is an associated homotopy exact sequence of differential fundamental group schemes.
The first aim of this work is to establish an analog of the fundamental exact sequence in this

Date: April 18, 2023.
1



2 TPQ BAO, VQ BAO, AND PH HAI

relative setting when S is the spectrum of a Dedekind ring (Theorem 3.2). Thus, let η : S −→ X be
a section to f , or, in other words, an R-point of X as an R-schemes (by means of f ). Let s be a k-
point of SpecR and x = η(s). Tannakian duality applied to the category of connections on X /k,
R/k, and X /R equipped with natural fiber functors yields the fundamental groupoids Π(X /k),
Π(R/k) and the relative fundamental group π(X /R) (see Appendix A.2). These groupoids and
group are put together in a sequence

π(X /R) −→Π(X /k) −→Π(S/k) −→ 1,

which is shown to be exact, see 2.1. We note that this result has appeard in the PhD thesis of
Hugo Bay-Rousson [1], however some parts of the argument in the proof there is missing. We
provide here a full account.

Given the exact sequences, our problem is to compare the de Rham cohomology and the
group cohomology as well as expressed the Gauss-Manin connection in terms of group coho-
mology. Let L be the quotient group scheme of π(X /R) such that the sequence below is exact:

1 −→ L −→Π(X /k) −→Π(S/k) −→ 1.

Then for a connection V ∈C (X /k) there is a natural map

H n(L,V ) −→ Hn
DR (X /R, inf(V ))

which is π(R/k)-equivariant (cf. Theorem 5.18), where V = η∗(V ) and inf(V ) is the relative con-
nection inflated from V (cf. 2.3.3). In general the above maps are far from an isomorphism.
However for the case f : X −→ SpecR is a smooth family of curves of genus ≥ 1 we show they are
isomorphisms in degre 0 and 1 (cf. Corollary 4.6).

2. FLAT CONNECTIONS AND THE DIFFERENTIAL FUNDAMENTAL GROUPOID

Let k be a field of characteristic 0. Let R be a k-algebra, which is a Dedekind ring. Let
f : X −→ Spec(R) be a smooth map with geometrically connected fibers.

2.1. Connections. Let Ω1
X /R denote the sheaf of realtive Kähler differentials on X /R. By as-

sumption on X , it is a locally free sheaf. A flat connection on a sheaf of OX -modules V on X is
an f −1OS-linear map

∇ : V −→ V ⊗Ω1
X /S ,

satisfying the Leibniz rule and is flat in the sense that the composed map ∇1 ◦∇= 0, where

∇1 :Ω1
X /S ⊗V −→Ω2

X /S ⊗V ; ω⊗e 7−→ dω⊗e −ω⊗∇(e).

(cf. [Ka70, (1.0)]).

IWhen no confusion may arise we shall address a sheaf with flat connection simply as a
connection. The notation is (V ,∇) and usually abbreviated it to V .

We denote by MIC(X /k) the category of OX -quasi-coherent sheaves with k-linear flat
connections. It is known that each OX -coherent sheaf with flat connection is locally free and
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the dual sheaf is equipped with a (dual) connection in a canonical way. Hence the full subcat-
egory C (X /k) of coherent connections is a rigid tensor k-linear abelian category. Similarly we
have the category C (S/k). We have the functor

f ∗ : C (R/k) −→C (X /k).

We denote by MIC(X /R) the category of quasi-coherent OX -sheaves equipped with R-
linear flat connections and by MIC◦(X /R) the full subcategory of OX -locally free coherent sheaves.
We let C (X /R) be the full subcategory of MIC(X /R) consisting of objects which can be pre-
sented as quotients of objects from MIC◦(X /R). This is a Tannakian category over R in the
sense of Saavedra (cf. [Sa72] or [DH18]).

There might be coherent sheaves with connection on X /R which do not belong to C (X /R)
but we do not know any examples.

According to [DH18], an object of C (X /R) is locally free if (and only if) it is torsion free
over R. We introduce the notion of a special subquotient of locally free connection as follows:
Let V ∈ MIC◦(X /R). Let α : V ′ → V be a monomorphism in C (X /R). If Coker(α) is also locally
free, we say that α is a special monomorphism. Call an object V ′′ ∈ MIC◦(X /R) a special sub-
quotient of V if there exists a special monomorphism V ′ → V and an epimorphism V ′ → V ′′.
The category of all special sub-quotients of various T a1,b1 (V )⊕ ·· · ⊕T am ,bm (V ) is denoted by
〈V 〉s⊗.

2.2. De Rham cohomology. For a flat relative connection (V ,∇)) on X /R, the sheaf of horizon-
tal sections is define to be

V ∇ := Ker(∇ : V →Ω1
X /R ⊗V ).(1)

This is an R-linear sheaf. The 0-th de Rham cohomology of V is defined to to be

H0
dR (X /R,V ) := f∗V ∇.

Moreover H0
DR (X /R,M ) can be identified with the hom-set of connections

{ϕ : (OX ,d) −→ (V ,∇)}.

Since MIC(X /R) is equivalence to categories of left modules on the sheaf of differential
operators DX /R , it has enough injectives (cf. [Ka70]). Thus we can define the higher de Rham
cohomologies to be the derived functors of the functor

H0
DR (X /R,−) : MIC(X /R) −→ ModR .

This cohomologies can also be computed as the ext-groups of extensions in MIC(X /R). By
definition, Exti

MIC(X /R)(M ,N ) counts i -extensions in MIC(X /R), which are exact sequences

0 −→N −→N1 −→ . . . −→Ni −→M −→ 0,

upto an equivalence define as follows: two sequence are equivalent if there is a map of sequence
between them induced by the identity maps on M and N . Since MIC(X /R) has enough injec-
tive, Exti

MIC(X /R)(M ,−) are the right derived functors of the hom-functor

HomMIC(X /R)(M ,−) : MIC(X /R) −→ ModR .
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Thus we have the following:

Lemma 2.1. Let (M ,∇) be a flat connection in MIC(X /R). Then we have:

Exti
MIC(X /R)(OX ,d ,M ) ∼= Hi

DR (X /R,M ).

2.3. Fundamental groups and groupoids. Let η : Spec(R) −→ X be an R-point of X (as an R-
scheme). This section also yields a k-point x in the fiber Xs of X :

Spec(k)
s //

x
��

Spec(R)

η

��
Xs

// X .

These points yield various Tannakian groups and groupoids.

2.3.1. The fundamental groups. The fundamental group π(X /k) = π(X /k, x) is the Tannakian
dual of C (X /k) with respect to the fiber functor x∗ (cf. Appendix A.6):

Repk (π(X /k)) ∼=C (X /k).

The fundamental group π(S/k) = π(S/k, s) is the Tannakian dual of C (X /k) with respect to the
fiber functor s∗:

Repk (π(S/k)) ∼=C (S/k).

The map f : X −→ S induces a group homomorphism

f∗ :π(X /k) −→π(S/k).

This map is surjective as it admits a section induced from the section η : S −→ X .

2.3.2. The fundamental groupoid. Assume that EndC (X /k)(R,dR/k ) = k, then by [De90][Théorème
1.12] we have the absolute fundamental groupoid Π(X /k) =Π(X /k,η) is the Tannakian dual of
C (X /k) with respect to the fiber functor η∗ (cf. Appendix A.8 for more details):

Rep f (R :Π(X /k)) ∼=C (X /k).

The absolute fundamental groupoidΠ(R/k) is the Tannakian dual of C (R/k) with respect to the
forgetful functor id : (V ,∇) 7−→V :

Rep f (R :Π(R/k)) ∼=C (R/k).

The map f : X −→ S induces a group homomorphism

f ∗ :Π(X /k) −→Π(R/k).

This map is surjective as it admits a section induced from the section η : S −→ X .

We notice thatπ(X /k) is the base change ofΠ(X /k) with respect to the map (s, s) : Speck −→
Spec R ×Spec R.
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2.3.3. The relative fundamental group scheme. The relative fundamental group schemeπ(X /R) =
π(X /S,η) is the Tannakian dual of C (X /R) with respect to the fiber functor η∗ (cf. Appendix
A.10):

Repf(π(X /R)) ∼=C (X /R).

We have the inflation functor

inf : C (X /k) −→C (X /R)

which assigns to each connection (V ,∇) in C (X /k) the R-linear connection (V ,∇/R ) in C (X /R):

∇/R : V
∇−→Ω1

X /k ⊗V −→Ω1
X /R ⊗V .

This relative connection is called an inflated connection, and is denoted by inf(V ) for short.

The functor inf induces a homomorphism

π(X /R) −→Π(X /k),

which factors through the diagonal subgroup scheme Π(X /k)∆ of Π(X /k) (see Appendix A.2).

2.3.4. The Ind-categories. The Tannakian dualities mentioned above extend to the Ind-categories.
Namely we have equivalences:

Rep(π(X /k)) ∼= Ind-C (X /k);

Rep(π(X /R)) ∼= Ind-C (X /R);

Rep(R :Π(X /k)) ∼= Ind-C (X /k),

where the ind-categories on the right hand side are defined as the subcategories of connections
which can be presented as the union of its coherent subconnections (or equivalently, as direct
limits of coherent connections).

We notice that there are quasi-coherent connections which cannot be presented as union
of coherent subconnections, for instance the sheaf of algebras of differential operators.

2.4. The Gauss-Manin connection. We briefly state the construction of Gauss-Manin connec-
tion which is based on [ABC20] and [Ka70]. If V is an inflated connection, V = infM , then the
connection on M restricted to M∇/R yields a connection δ on H0

dR (X /R, infM ) over R/k, this is
the 0-th Gauss-Manin connection. The explicit construction is as follows.

The smoothness of f implies the following exact sequence of Kähler differentials:

(2) 0 −→ f ∗Ω1
R/k −→Ω1

X /k −→Ω1
X /R −→ 0.
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This filtration ofΩ1
X /k induces a filtration onΩ2

X /k which is compatible with the connection and
we obtain the following commutative diagram (cf. [Ka70, (3.2)]).

Ω2
R/k ⊗M

��
0 //

��

Ω1
R/k ⊗M //

��

Ω1
R/k ⊗Ω1

X /k ⊗M

��
0 //

��

M
∇ //

��

Ω1
X /k ⊗M

��

∇1 // Ω2
X /k ⊗M

��
0 // M

∇/R // Ω1
X /R ⊗M // Ω2

X /R ⊗M .

Notice that ∇1 ◦∇= 0, hence diagram chasing yields a map

δ : M∇/R −→Ω1
R/k ⊗M∇/R .

Applying f∗ we obtain a flat connection δ on H0
DR (X /R, infM ) over R/k. The resulting connec-

tion is denoted by f∗(M ,∇) or f∗M for short. Thus we have a left exact functor

f∗ : MIC(X /k) −→ MIC(S/k).

The i -th derived functor of this functor is called the i -th Gauss-Manin connection of (M ,∇):

Ri f∗ : MIC(X /k) −→ MIC(X /k).

This functor can be computed by de Rham cohomology as follows. The sequence in (2) yields
an exact sequences of complexes:

(3) 0 −→ f ∗Ω1
R/k ⊗ (Ω•−1

X /R ⊗M ) −→Ω•
X /k ⊗M −→Ω•

X /R ⊗M −→ 0.

Applying the hyper-derived functor Ri f∗ to the exact sequence above to get the long exact se-
quence:

0 −→ ·· · −→ Ri f∗(Ω•
X /R ⊗M )

d−→ Ri+1 f∗( f ∗Ω1
S/k ⊗ (Ω•−1

X /R ⊗M )) −→ ·· · .

The connecting map

δi : Ri f∗(Ω•
X /R ⊗M ) −→ Ri+1 f∗( f ∗Ω1

R/k ⊗ (Ω•−1
X /R ⊗M ))

can be written as:

δi : Ri f∗(Ω•
X /R ⊗M ) −→Ω1

R/k ⊗Ri f∗(Ω•
X /R ⊗M )

by projection formula. As argued in [ABC20, 23.2.5], δ is the same as Gauss-Manin connection
described above. Moreover, we get a long exact sequence:

· · ·→ Hi
DR (X /k, (M ,∇)) → Hi

DR (X /R, inf(M ))
δi→Ω1

R/k ⊗Hi
DR (X /R, inf(M )) →···(4)
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In conclusion we have the commutative diagram:

MIC(X /k) MIC(X /R)

MIC(R/k) Mod(R),

inf

Ri f∗ Hi
DR (X /k,−)

forget

Lemma 2.2. Let f : X → SpecR be a proper smooth morphism of smooth k-schemes. Let (V ,∇)
be an object in C (X /k). Then Hi

DR (X /R, inf(V )) is a finite projective R-module.

Proof. We begin with the E1-De Rham spectral sequence:

E ab
1 = Ra f∗(Ωb

X /S ⊗ Inf(V )) =⇒ Ra+b f∗(Ω•
X /S ⊗ Inf(V )).

Combined with the coherent property is a strongly exact property and every term of

E ab
1 = Ra f∗(Ωb

X /S ⊗ Inf(V ))

is coherent, then this implies that Ra+b f∗(Ω•
X /S ⊗ Inf(V )) coherent. As

(Ra+b f∗(Ω•
X /S ⊗ Inf(V )),GM) ∈ MIC(S/k),

then we see that Hi
DR (X /S, Inf(V )) is a locally free OS-module via [And01, Corollary 2.5.2]. �

Consequently, the functor R i f∗ restrict to functors C (X /k) −→ C (R/k) and we have the
following commutative diagram:

C (X /k) C ◦

C (R/k) Mod◦(R),

inf

Ri f∗ Hi
DR (X /k,−)

For

where Mod◦R is the category of finite projective modules over R.

Lemma 2.3. Let (M ,∇) be an object of C (X /k). Then the connection f ∗( f∗M ) is the maximal
subobject of (M ,∇) in C (X /k) with the property: its inflation to C (X /R) is a trivial connection.

Proof. The connection on the pull-back

f ∗ f∗M = f ∗H0
DR (X /R, infM ) =OX ⊗H0

DR (X /R, infM )

is given by ∇(a ⊗ e) = d a ⊗ e +a ⊗δe. This implies that (OX ⊗H0
DR (X /R, infM ),∇) is a subcon-

nection of M with the property that its inflation is a trivial relative connection.

Actually, it has to be the maximal such, as any other W ⊂M would have the property that
(∇/R)|W is generated by horizontal sections. �
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Remark 2.4. The Tannakian interpretation of Lemma 2.3 is as follows. Let M = η∗(M ) be the
representation of Π(X /k) that corresponds to M . Then f∗infM corresponds through η∗ with a
representation ofΠ(R/k, id) and f ∗ f∗infM corresponds with a subreprsentation of M on which
the action of Π(X /k) factors through the action of Π(R/k, id), or equivalently, the group L acts
trivially, where L is the kernel of f :Π(X /k) −→Π(R/k, id), see Appendix A.2.4.

3. THE FUNDAMENTAL EXACT SEQUENCE

3.1. The homotopy exact sequence. The following sequence is shown to be exact by L. Zhang
[Zha14] in equal characteristics zero and J. P. dos Santos [dS15] in the general case and is called
the homotopy exact sequence, it resembles the topological homotopy exact sequence. From
now on, we assume more that f : X → S is the projective morphism and EndC (X /k)(R,dR/k ) = k.

Theorem 3.1. The following sequence is exact

π(Xs/k, x) −→π(X /k, x) −→π(S/k) −→ 1.

This exact sequence generalizes Grothendieck’s homotopy exact sequence for etale fun-
damental groups [SGA1, Théorème IX.6.1].

3.2. The fundamental exact sequence. The functor f ∗ and the inflation functor induce the
following sequence of homomorphisms of group and groupoid schemes:

π(X /R)
inf−→Π(X /k)

f−→Π(S/k, id) −→ 1.

We first notice that the composition f ◦ inf corresponds to the functor taking pull-back
of connections on S/k along f and then inflating to relative connections on X /R, hence sends
any connection on S/k to a trivial relative connection on X /R. Therefore it is a trivial homo-
morphism. We aim to show that the above sequence is exact.

Theorem 3.2. Let f : X −→ SpecR be a smooth projective map with geometrically connected
fibers. Then the sequence

π(X /R)
inf−→Π(X /k)

f−→Π(S/k, id) −→ 1

of flat affine group schemes and groupoids schemes over R is exact.

We notice that the exactness of this sequence amounts to the exactness of the following
sequence of R-group schemes (see Appendix A.2.4):

π(X /R) −→Π(X /k)∆ −→Π(S/k, id)∆ −→ 1.

The name “fundamental exact sequence” is motivated by Grothendieck’s fundamental
exact sequences of the etale fundamental groups:

1 −→πet(X , x̄) −→πet(X , x̄) −→ Gal(k̄/k) −→ 1.



TANNAKIAN DUALITY AND GAUSS-MANIN CONNECTIONS FOR A FAMILY OF CURVES 9

Indeed, the fundamental groupoidΠ(S/k,F ) can be seen as a generalization of the Galois group
Gal(k̄/k), while the relative fundamental group plays the role of the geometric etale fundamen-
tal group. Notice that in our settings, the sequence is not left exact.

For the etale fundamental groups, Grothendieck used the fundamental exact sequence
to deduce the homotopy exact sequence. For the differential fundamental groups, dos Santos
provided direct proof using his criterion for the exact sequence of group schemes. In what
follows we shall use 3.1 to deduce 3.2. The proof will be given in section 3.2.3.

3.2.1. Some lemmas. Combine Theorem 3.1 with the criterion for exact sequences of affine
group schemes [EHS08, Theorem A.1] we deduce the following lemma (cf. [DHdS18, Theo-
rem 9.1]).

Lemma 3.3. Let M be an object of C (X /k).

(1) The maximal trivial subobject of M |Xs is the restriction of a subobject T −→ M . More-
over, T is the pull-back to C (X /k) of an object of C (S/k);

(2) If N belongs to 〈M |Xs〉⊗, then there exists Ñ in 〈M 〉⊗ and a monic N −→ Ñ |Xs .

Proof. According to Theorem 3.1, the following sequence

π(Xs/k) −→π(X /k) −→π(S/k) −→ 1.

is exact. Using the characterization of exactness presented in [EHS08, Theorem A.1], we imme-
diately arrive at the desired conclusion. Moreover, the proof in loc. cit. shows that Ñ can be
chosen in 〈M 〉⊗. �

The following lemma is [DHdS18, Theorem 9.2], which generalizes a result of Deligne
([EH06, Theorem 5.10]).

Lemma 3.4. Let M be an object of C (X /k) and let V −→ inf(M ) be a special subobject in C (X /R).
Then there exists N ∈ C (X /k) and an epimorphism Inf(N ) −→ V . Moreover, N can be chosen
in 〈M 〉⊗.

Proof. In order to prove this lemma, we need the following claims.

Claim 1. Let E → inf(M ) be a special monic in C (X /R). If

HomC (X /R)(E , inf(M )/E ) = 0,

then the relative connection E extends to an absolute connection such that the arrow E → M

is a morphism of C (X /k).

Verification. This is a special case of Theorem 9.4 in [DHdS18]. �

For a connection V which is is locally free of rank one as an OX -module we define the
V -socle series. The first V -socle of inf(M ),

Soc1(V ) ⊂ inf(M ),
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is defined as the sum of all subobjects of inf(M ) which are isomorphic to V . For i ≥ 1, we put

Soci+1(V ) = inverse image in inf(M ) of Soc1(inf(M )/Soci (V ),

that is

Soci+1(V )/Soci (V ) ∼= Soc1(inf(M )/Soci (V )).(5)

Claim 2. For i ≥ 1, we have the following properties of the socle series.

(1) The subobject Soci (V ) of inf(M ) is special.
(2) In C (X /R) we have Soc1(V ) ∼= V ⊕r for some r.

Verification. We could assume that V is the trivial relative connection since the general case is
treated by employing the relative connection V ∨⊗ inf(M ). We see that the functor η∗ induces
an equivalence

〈inf(M )〉s
⊗ ∼= Rep◦

R (G),

where G is an affine and flat group scheme over R (see Proposition B.8-(1) and Eq. (38)), and
the result follows. �

We turn to prove the lemma keeping the assumption that V is locally free of rank one as
an OX -module. Since Soci (V ) ⊂ inf(M ) is special (Claim 2-(1)), there exists r ∈N such that

Socr (V ) = Socr+1(V ) = . . .

Due to the definition of the socle, we conclude that there are no submodules of

inf(M )/Socr (V )

isomorphic to V . This implies that all arrows

V → inf(M )/Socr (V )

in C (X /R) to be null since the assumption on rank of V and by Prop. 5.1.1 in [DH18]. Thus, we
see that any arrow

Socr (V ) −→ inf(M )/Socr (V )

is null because the following sheaves

Soc1(V ),
Soc2(V )

Soc1(V )
, . . .

are all isomorphic to direct sums of V (Claim 2-(2) and Eq. (5)). By Claim 1, the relative con-
nection Socr (V ) is an inflation, i.e. there exists an absolute connection N together with a
monomorphism N →M in C (X /k) such that

inf(N ) −→ inf(M )

is our special monic Socr (V ) → inf(M ). Since V is a quotient of Socr (V ) = inf(N ) and since N

is a subobject of M , the result is as follows.

The general case follows from the fact that if m = rank(V ), then∧m−1
V ∨⊗det(V ) ∼= V ,

which show that V is a quotient of inf(M )∨⊗ inf(N ). �
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3.2.2. The group schemes H. We first provide a Tannakian description of the group scheme H
which is the image of the map

inf :π(X /R) −→Π(X /k)∆.

Definition 3.5 (The category C ). Let C be the full subcategory of C (X /R) of objects which can
be presented as subquotient of objects of the form Inf(M ), M ∈C (X /k).

Combining Lemmas 3.4 and 3.3 we deduce the following property of the category C .

Lemma 3.6 (cf. [DHdS18, Theorem 8.2]). Let M be an absolute connection on X /k. Then each
locally free relative connection in 〈inf(M )〉⊗ is indeed a special subobject of a tensor generated
object from inf(M ).

The proof of this lemma requires techniques of flat affine group scheme and will be given
in the Appendix, see Theorem B.9.

Lemma 3.7. The category C defined above together with the fiber functor η∗ is a Tannakian
category and its Tannakian group H is the image of the homomorphism π(X /R) −→ Π(X /k)∆.
More precisely, the canonical map π(X /R) −→ H is surjective (faithfully flat) and the map H −→
Π(X /k)∆ is a closed immersion.

Proof. We begin by proving that C is the Tannakian category in the sense of Definition A.9.
The category C is trivially closed under taking tensor product. Moreover, C is R-linear tensor
subcategory of C (X /R). It remains to show that C is abelian and each object of C is dominated
by its subcategory of definition C ◦. Let f : N →P be a morphism in C . The kernel and cokernel
exist in the category C (X /R), we can check that these objects have the form of subquotient
of inf(M ). The natural map Coim( f ) → Im( f ) is still an isomorphism in C implies that C is
abelian. Moreover, every object of C can be presented as the quotient of C ◦ by its construction.
We conclude that C is the Tannakian category and we denote its Tannakian group as H .

We now turn to prove that H is the image of the homomorphism π(X /R) −→ Π(X /k)∆.
We use Theorem A.1. By definition of C we have immediately that H is a quotient of π(X /R).
On the other hand, every object of C ◦ is isomorphic to a special subquotient of an object of the
form inf(M ) via Lemma 3.6, this again, my means of Theorem A.1, implies that H −→Π(X /k)∆

is a closed immersion. �

3.2.3. Proof of 3.2. Our strategy is to show that the group H defined in the previous subsection
is equal to the kernel L of the map f :Π(X /k) −→Π(R/k, id). Notice that L is equalt to the kernel
of Π(X /k)∆ −→Π(S/k,F )∆ (cf. Appendix A.2.4).

By construction, we have the closed immersion H ⊂ L, which induces a functor F : RepR (L) −→
RepR (H). This functor is faithful by construction. We will show it is full and essentially surjec-
tive.

Step 1. We show that F ◦ : Rep◦
R (L) −→C ◦ is full.

Let U0,U1 be objects in Rep◦
R (L) andφ : F ◦(U0) →F ◦(U1) a C -morphism, that is,φ is a R-

linear map U0 →U1, which is H-linear. We show that φ is in fact L-linear. Indeed, by Corollary
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5.6 there are L-linear morphism π : V0 � U0 and i : U1 ,−→ V1, where V0 and V1 are object in
Rep(R :Π(X /k)). We set ψ= iφπ and then we have have the following diagram

U0
φ
// U1� _

i
��

V0 ψ
//

π
OOOO

V1.

Thus φ is L-linear if and only ψ is. Thus one is led to show that

HomL(V0,V1) = HomH (V0,V1),

for any V0,V1 ∈ Rep(R :Π(X /k)), which amounts to showing V L =V H for V =V ∨
0 ⊗V1, where V L

is the submodule of V of elements stable under the action of L.

Now, through Tannakian duality Lemma 2.3 tells us that (see Remark 2.4), for V ∈ Rep(R :
Π(X /k)) that correspond to the connection V ∈C (X /k),

V H =V π(X /R) = H0
DR (X /R, inf(V )) ⊂V L .

On the other hand we obviously have V H =V L . Thus we have an equality.

Step 2. We show that F is essentially surjective. Let V be an object in C ◦. Then, according to
Lemma 3.6, there exists an object M in C (X /k) such that V is a special subobject of inf(M ).
According to Lemma 3.4, V can be realized as the image of a morphism ϕ between inflated
objects. By the above discussion, ϕ is also in the image of F , hence so is Im(ϕ). It means that V

corresponds to a representation of L and we finish the proof. �

4. A COMPARISON THEOREM

We continue to assume that f : X −→ R is a smooth proper morphism of smooth k-
schemes of geometrically connected fibers. We shall assume moreover that the fibers are of
dimension 1 and the genus is at least 1.

We aim to compare, through Tannakian duality, the de Rham cohomology of connections
on X /R and the group cohomology of π(X /R). In general they are not equal due to the fact that
representations of the fundamental group constitute only a part of connections (cf. subsection
2.3.4). But in the case that all fibers are equidimensional of dimension 1, they may be equal.
This will be done in Theorem 4.3.

4.1. The Poincaré duality for relative de Rham cohomology. The connection imposes a strong
condition on the underlying sheaf. For instance, on a smooth scheme over a field, a coherent
connection is automatically locally free.

By the assumption that f∗OX = R, there exists an R-module isomorphism

t : H1(X ,Ω1
X /R ) −→ R
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(cf. [Stack, Tag 0G8I]) with the following property: for all p, q ∈ {0,1}, the pairing

Hq (X ,Ωp
X /R )×H1−q (X ,Ω1−p

X /R ) −→ R

given by the relative cup product composed with t is a perfect pairing. We define the genus of
X /R to be the rank of the projective module

H0(X ,Ω1
X /R ) ∼= H1(X ,OX ).

Now given (V ,∇) ∈ C (X /R) with V a locally free sheaf and Hi
DR (X /R, (V ,∇)) is R-flat for

i = 0,1,2. By adapting the proof of [Stack, Tag 0FVY], the pairing

Hi (X ,Ω1
X /R ⊗OX V ∨)×H1−i (X ,V ) −→ R,(6)

are perfect for i = 0,1.

Proposition 4.1. Let f : X −→ SpecR be a smooth proper morphism of smooth k-schemes of
geometrically connected fibers of dimension 1. Let (V ,∇) ∈ C (X /R) such that V is locally free
sheaf of finite rank and Hi

DR (X /R, (V ,∇)) is R-flat for i = 0,1,2. Then

(7)
H2

dR (X /R, (V ,∇)) ∼= H0
dR (X /R, (V ,∇)∨)∨

H1
dR (X /R, (V ,∇)) ∼= H1

dR (X /R, (V ,∇)∨)∨.

Proof. We consider the first page of Hodge to de Rham spectral sequence for H∗
dR (X ,Ω1

X /R ⊗V ) :

H1(X ,V ) H1(X ,Ω1
X /R ⊗V )

H0(X ,V ) H0(X ,Ω1
X /R ⊗V ),

H1(∇)

H0(∇)

so the second page of this spectral sequence as follows

kerH1(∇) cokerH1(∇)

kerH0(∇) cokerH0(∇),

this implies that the spectral sequence degenerates at E 2. Analogously, we also have the second
page of Hodge to de Rham spectral sequence for H∗

dR (X ,Ω1
X /R ⊗V ∨) :

kerH1(∇∨) cokerH1(∇∨)

kerH0(∇∨) cokerH0(∇∨).

https://stacks.math.columbia.edu/tag/0G8I
https://stacks.math.columbia.edu/tag/0FVY
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Notice that by assumption, every term of the above spectral sequences is projective with finite
rank. Thus, we prove (7) by showing that

(8)
cokerH1(∇) ∼= kerH0(∇∨)∨

kerH1(∇)⊕ (cokerH0(∇)) ∼= (cokerH0(∇∨))∨⊕kerH1(∇∨)∨.

We first prove cokerH1(∇) ∼= kerH0(∇∨)∨. Using (6), we have

H1(X ,Ω1
X /R ⊗V ) H1(X ,V )

H0(X ,V ∨)∨ H0(X ,Ω1
X /R ⊗V ∨)∨

∼= ∼= .

If we can prove that H1(∇)∨ = H0(∇∨), then the following diagrams

H1(X ,Ω1
X /R ⊗V ) H1(X ,V )

H0(X ,V ∨)∨ H0(X ,Ω1
X /R ⊗V ∨)∨,

H0(X ,V ∨) H0(X ,Ω1
X /R ⊗V ∨),

∼= ∼=
H1(∇)

H 0(∇∨)∨

H0(∇∨)

implies that cokerH1(∇) ∼= kerH0(∇∨)∨. To show that H1(∇) is dual to H0(∇∨), we show that the
following diagram

(9)

H1(X ,V )×H0(X ,V ∨) H1(X ,V ⊗Ω1
X /R )×H0(X ,V ∨)

H1(X ,V )×H0(X ,Ω1
X /R ⊗V ∨) H1(X ,Ω1

X /R ⊗V ∨⊗V )

H1(X ,Ω1
X /R ) ∼= R

H1(∇)×i d

i d×H0(∇∨) ∪
∪

ev

is commutative, that is, ev ◦∪◦ id×H0(∇∨) = ev ◦∪◦H1(∇)× id. Since the differential map dX /R

restricted to H0(X ,OX ) is zero, so

∇∨(`) = dX /R ◦`− (1⊗`)◦∇=−(1⊗`)◦∇,

when restricted to H0(X ,OX ). This implies that the Diagram (9) is commutative since this dia-
gram describes the dual of free R-module of finite rank.

Using the same argument, we get the second equation of (8). �

Propositions 2.2 and 7 imply:
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Corollary 4.2. Let X be a smooth projective curve over principal ideal domain R such that H0(X ,OX ) =
R. Let (V ,∇) ∈C (X /k). Then

H2
dR (X /R, inf(V )) ∼= H0

dR (X /R, inf(V )∨)∨

H1
dR (X /R, (inf(V )) ∼= H1

dR (X /R, inf(V )∨)∨.

4.2. A comparison theorem. Let k be a field of characteristic 0. Let R be a k-algebra, which is a
Dedekind ring. Let f : X −→ S = Spec(R) be a smooth map with fiber geometrically connected.
We recall from Subsection ?? that the fibre functor η∗ induces

Repf(π(X /R)) ∼=C (X /R).

By taking the ind-category of these categories, we have

Rep(π(X /R)) ∼= Ind-C (X /R).

It follows from the Tannakian duality mentioned above and the description of de Rham
cohomology as ext-group (cf. subsection 2.2) that for any V ∈ Ind-C (X /R) and V = η∗(V ) we
have isomorphisms

H0
DR (X /R,V ) ∼= H0(π(X /R),V )(10)

H1
DR (X /R,V ) ∼= H1(π(X /R),V ).(11)

The point is that, for any exact sequence

0 −→ V −→ V ′ −→OX −→ 0,

in MIC(X /R), if V is in Ind-C (X /R), then so is V ′.

We are now ready to prove:

Theorem 4.3. Let V be an object in C (X /R) which is locally free. Denote V := η∗(V ). Then the
map

δ2 : H2(π(X /R),V )) ∼= H2
dR (X /R, inf(V ))

is is injective. If X has genus g ≥ 1 and V is an inflated connection then δ2 is an isomorphism.

Proof. Let J be the injective envelope of V in Rep(π(X /R)) and let (J ,∇J ) be the corresponding
connection. Since J is injective in Rep(π(X /R)), one has

H1
dR (X /R, (J ,∇J )) ∼= H1(π(X /R), J ) = 0.

Hence, the long exact sequences associated with the exact sequences 0 →V → J → J/V → 0 and
0 → (V ,∇V ) → (J ,∇) → (J /V ,∇) → 0 yield

H 2(π(X /R),V ) ∼= H 1(π(X /R), J/V ) ∼= H1
dR (X /R,J /V ) ,→ H2

dR (X /R,V ).(12)

Let (V ,∇) ∈ C (X /k). Corollary 4.2 gives us that H2
DR(X /R, inf(V )) is a Poincaré dual to

H0
DR(X /R, inf(V )∨). Recall that f ∗ f∗(inf(V )∨) is the maximal trivial subobject of inf(V )∨ as rel-

ative connection, and the inclusion induces an isomorphism on H0
DR(X /R,−). Consequently

the dual map, which is surjective, induces an isomorphism on H2
DR(X /R,−). Thus, it suffices to

show the surjectivity for the trivial connection (OX ,d).
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As for the last claim, if g ≥ 1 then the module H0(X ,Ω1
X ) non-zero. Consequently, the first

de Rham cohomology H1
DR (X /R,OX ) is non-zero. The Poincaré duality for de Rham cohomol-

ogy tells us that the paring

H1
DR (X /R,OX )×H1

DR (X /R,OX ) −→ H2
DR (X /R,OX )

is perfect. Since de Rham cohomology commute with base change, we conclude that the above
map is surjective (cf. [Stack, Tag 0FM0]). Hence there are two classes α,β ∈ H1

DR (X /R, (OX ,d)),
so that 0 6=α∪β is a generator of the module H2

DR (X /R, (OX ,d)) ∼= R. Thus there is a diagram of
extensions in C (X /R):

α : 0 −→OX −→ E −→O −→ 0

β : 0 −→OX −→F −→O −→ 0.

The cup product α∪β is the sequence obtained by compose the above sequences:

(13) α∪β : 0 −→OX −→ E −→F −→O −→ 0

The corresponding sequence Repf(π(X /R)) shows that δ2 is surjective. �

4.3. The universal extension theorem. Our next aim is to compare the cohomology of H and
of π(X /R). By the nature of H , we will need the following result, which is an adaption of [EH06,
Thm. 4.2]. The purpose of this subsection is to prove the following theorem:

Proposition 4.4 (Universal extension). Let V be an object in C (X /k), then there exists an exten-
sion in C (X /k):

0 −→ V −→W −→ f ∗(R1 f∗(V ,∇)) −→ 0

with the property that the connecting morphism in the long exact sequence of de Rham cohomol-
ogy on X /R:

H0
DR (X /R, inf( f ∗(R1 f∗(V ,∇))) = H1

DR (X , inf(V ))
connecting−→ H1

DR (X /R, inf(V ))

is the identity map.

Proof. Let Z = f ∗(R1 f∗(V ,∇)) (see subsection 2.4). Then

inf(Z ) =OX ⊗H1
DR (X /R, inf(V )).

Let
W = V ⊗Z ∨

as objects in C (X /k). Then we have isomorphisms in C (X /k) of cohomologies Gauss-Manin
connections:

H1
DR (X /R, inf(W )) ∼= Ext1

MIC(X /R)(OX , inf(V )⊗ infZ ∨)

∼= Ext1
MIC(X /R)(inf(Z ), inf(V ))

∼= H1
DR (X /R, inf(V ))∨⊗Ext1

MIC(X /R)(OX , inf(V ))

∼= H1
DR (X /R, inf(V ))∨⊗H1

DR (X /R, inf(V ))
∼= EndR (H1

DR (X /R, inf(V ))).

https://stacks.math.columbia.edu/tag/0FL6
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Let ε be the element in Ext1
MIC(X /R)(inf(Z ), inf(V )), the image of which the identity map in

EndR (H1
DR (X /R, inf(V ))). As the identity map is killed by the Gauss-Manin connections, so is

ε.

Now consider the exact sequence of complexes:

0 −→ f ∗Ω1
R/k ⊗R (Ω•−1

X /R ⊗W ) −→Ω•
X /k ⊗W −→Ω•

X /R ⊗W −→ 0.

In our situation, our base scheme is an affine scheme, so we get a the long exact sequence (4):

· · · −→ H1
DR (X /k,W ) −→ H1

DR (X /R, inf(W )) −→Ω1
R/k ⊗R H1

DR (X /R, inf(W )) −→ ·· ·

Now the homomorphism:

δ1 : H1
DR (X /R, inf(W )) −→Ω1

R/k ⊗R H1
DR (X /R, inf(W ))

is the Gauss-Manin connection. Hence, ε ∈ Kerδ1 and thus it is lifted to ε̃ ∈ H1
DR (X /k, (W ,∇W ))

by the long exact sequence. Consequently there exists an extension of connections in C (X /k):

ε̃ : 0 −→ (W ,∇W ) −→ (T ′,∇T ′) −→ (OX ,d) −→ 0.

Notice that the inflation of this sequence to C (X /R) is ε. Hence the induced connecting map is
the identity map by construction of ε. �

With theorem 4.4, we have a statement for cohomology comparison.

Corollary 4.5. Let (V ,∇V ) ∈C (X /k), V = η∗(V ) the corresponding representation of π(X /R). Let
H be the group scheme in subsection 3.2.2. Then we have:

H1(H ,V ) ∼= H1(π(X /R),V )
Theorem 4.3∼= H1

DR (X /R, inf(V )).

Proof. The category C ∼= Rep f (H) is a full subcategory of C (X /R), so the restriction homomor-
phism

H1(H ,V ) −→ H1(π(X /R),V )

is injective.

We prove the inverse, which, through Tannakian duality, amounts to saying that each
exension

e : 0 −→ inf(V ) −→ (V ′,∇V ′)) −→OX −→ 0

is in C , that is V ′ ∈C .

Let ε ∈ H1(π(X /R),V ) ∼= H1
DR (X , inf(V )) be the universal extension of Proposition 4.4.

Then e ∈ H1
DR (X /R, inf(V )), seen as a map in C (X /R)

e : OX −→OX ⊗H1
DR (X /R, Inf(V )),
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fits in the commuative diagram

e : 0 inf(V ) (V ′,∇V ′) OX 0

ε̃ : 0 inf(V ) inf(W ) inf(Z ) 0.

= e

Applying long exact sequence of H0
DR (X /R,−) we get:

H1
DR (X /R,OX ) H1

DR (X /R, inf(V ))

H1
DR (X /R, inf(V )) H1

DR (X /R, inf(V )),

d

ε I d

I d

Thus (V ′,∇V ′) is the subconnection of inf(W ) hence is in C . This completes the proof. �

Corollary 4.6. Let L be the kernel of Π(X /k)∆ −→ Π(R/k)∆. Let V be a finite representation of
Π(X /k). Then we have isomorphism

Hi (L,V ) ∼= Hi (π(X /R),V ) for i = 0,1.

Proof. This is because L = H , cf. Theorem 3.2. �

5. THE GAUSS-MANIN CONNECTION FROM THE TANNAKIAN VIEWPOINT

This section aims to prove the Theorem 5.18. To do that we extend the theory of the
cohomology of group scheme [Ja87, Chapter 4] to the cohomology of groupoid scheme.

5.1. Cohomology of groupoid schemes. Let S = Spec(R) be an k-affine scheme and G be an
affine k-groupoid scheme acting transitively on S.

5.1.1. The injective object in the category Rep(S : G). Although we know that Rep(S : G) is the
ind-category of the category Rep f (S : G) (see A.2.2), we also recast that Rep(S : G) have enough
injectives. The advantages of this work make us give details of injective objectives in this cate-
gory which need for the aim of this section.

Lemma 5.1. The following statements are true:

(1) The category Rep(S : G) have enough injectives.
(2) A G-module V is injective if and only if there is an injective R-module I such that V is

isomorphic to a direct summand of I ⊗t O (G) with I regards as a trivial G-module.
(3) If V and M are G-module with V is projective R-module and M is injective G-module,

then V ⊗M is injective G-module.

Proof. Before giving the proof of (1) we need the following claim.
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Claim. Let U ,V be a G-module. We have the following functorial isomorphism

HomG (U ,V ⊗t O (G) ∼= HomR (U ,V ).

Verification. We have the following map

HomG (U ,V ⊗t O (G) → HomR (U ,V )

f 7→ (id⊗ε) f .

On the other hand, we have the inverse map as follows

HomR (U ,V ) → HomG (U ,V ⊗t O (G)

g 7→ ρV ◦ g ,

where ρV is the coaction of O (G) on V. �

Let V be a G-module. Since V is quasi-coherent as R-module, then we can embed R-
module V in some injective module I . We can consider I as G-module with trivial action. Then
we have injective G-map as follows:

V
ρV−→V ⊗t O (G) ,−→ I ⊗t O (G).

We shows that I ⊗t O (G) is injective G-module. Indeed, we consider the following G-module:

0 M M ′

I ⊗t O (G)

i

f g
.

We will show that there exists map g . By the above claim, we have

(14)

HomG (M ′, I ⊗t O (G)) HomG (M , I ⊗t O (G)

HomR (M ′, I ) HomR (M , I ).

i∗

∼= ∼=
i∗

Since R-module I is injective then the map i∗ at the bottom is surjective. Hence, take f ∈
HomG (N , I ⊗t O (G)) we can find g satisfies Diagram (14). Therefore, I ⊗t O (G) is injective G-
module and the result is as follows.

Proof of (2). We have proved that V can embed into some I ⊗t O (G). Since G-module V
is injective then V is a direct summand of I ⊗t O (G). The reverse direction is true because every
direct summand of injective G-module is injective G-module.

Proof of (3). If M is a direct summand of I⊗t O (G) as in (2), then V ⊗M is a direct summand
of V ⊗ I ⊗t O (G). Since V is R-flat module, then V ⊗ I ⊗t O (G) is isomorphic to Vtr⊗ I ⊗t O (G) (Mtr

is G-module with trivial action). We see that V ⊗M is injective G-module by (2). �

Definition 5.2. Let G be an affine k-groupoid schemes acting on S. We call H is subgroupoid
scheme if H is closed subscheme of G such that the morphism (m|H ,ε|H , ι|H ) makes H becomes
k-groupoid scheme acting on S. We call H is discrete subgroupoid scheme if H is closed sub-
cheme of the diagonal group scheme G∆.
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An affine k-groupoid scheme G acting on S is called flat if the morphisms s, t : G −→ S are
flat.

Remark 5.3. Lemma 5.1 is also true for G is flat affine k-groupoid schemes acting on S.

5.1.2. Fixed point functor. Let G be a k-groupoid scheme acting on S and V be a G-module. We
define the set of fixed points by

V G = {v ∈ (V )|ρV (v) = v ⊗1}.

If φ : V → V ′ is a homomorphism of G-modules, then φ(V G ) ⊂ V ′G . Thus, we have the fixed
point functor

Rep(S : G) −→ Veck

V 7→V G .

We see that if G is flat, then the fixed point functor is left exact. The category Rep(S : G) has
enough injectives, so have the derived functor

V 7→ Hn(G ,V ),

and call Hn(G ,V ) the n-cohomology group of V.

5.1.3. The induction of groupoid schemes. We extend the definition of induction functor in A.2.5
as follows: Let G be an affine k-groupoid scheme acting transitively on S = Spec(R) and H be its
subgroupoid scheme. For any representation V ∈ RepR (H), set

IndG
H (V ) := (V ⊗t O (G))H ,

where H acts on V as usual and on O (G) through the right regular action of G on O (G) (i.e. O (G)
is a right G-module). On this invariant space, G acts through the left regular action on O (G).
Thus, IndG

H is a functor RepR (H) → Rep(R : G).

Lemma 5.4 (Frobenius Reciprocity). Let G be a flat affine k-groupoid scheme acting on S =
Spec(R) and H be its flat subgroupoid scheme. There exists a functorial isomorphism

HomG (V , IndG
H (W )) ∼= HomH (V ,W ),(15)

V ∈ Rep(R : G),W ∈ RepR (H), i.e., IndG
H is the right adjoint to the functor restricting G-representations

to H .

Proof. The map is given by composing with the canonical projection

IndG
H (W ) −→W

v ⊗h 7→ vε(h).

The converse map is given by f 7→ ( f ⊗ i d)ρW . �

Proposition 5.5. Let L be a kernel of f : Π(X /k)∆ −→ Π(S/k,F )∆. Then the induction functor

IndΠ(X /k)∆

L is faithfully exact.
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Proof. We have the following map

Π(X /k)∆�Π(X /k)∆/L ,→Π(S/k,F )∆.

Since f is surjective, the above map implies that Π(X /k)∆/L ∼= Π(S/k,F )∆. We now can apply
Proposition 2.5 in [DHH17] for

Π(X /k)∆�Π(X /k)∆/L

to see that IndΠ(X /k)∆

L is faithfully exact. �

Corollary 5.6. Any L-representation is a quotient of aΠ(X /k)-representation. Consequently, any
R-projective representation of L is also a special subobject of a Π(X /k)-representation.

Proof. Using Proposition 5.5, Theorem A.3 combined with the following equality

IndΠ(X /k)
Π(X /k)∆

◦ IndΠ(X /k)∆

L
∼= IndΠ(X /k)

L ,

we see that IndΠ(X /k)
L is faithfully exact. Hence, using the same argument in Corollary A.4 the

result is as follows. �

5.1.4. Shapiro’s lemma. Grothendieck’s spectral sequence is standard in Homological algebra,
we recall it here for the reader’s sake. One can find proof in the book of Weilbel [We94].

Grothendieck’s spectral sequence. Let C ,C ′,C ′′ be abelian categories with C ,C ′ having enough
injectives. Suppose now that F : C → C ′ and F ′ : C ′ → C ′′ are additive (covariant) functors.
If F ′ is left exact and if F maps injectite objects in C to objects acyclic for F ′, then there is a
spectral sequence for each object M in C with differentials dr of bidegree (r,1− r ), and

E p,q
2 = (RpF ′)(RqF )M ⇒ Rp+q (F ′ ◦F )M .(16)

Remark 5.7. We remark on two facts.

(1) If F ′ is exact, then F ′ ◦RqF ' Rq
(
F ′ ◦F

)
for all n ∈N.

(2) If F is exact and maps injective objects to objects acyclic for F ′, then

(RnF ′)◦F ' Rn(F ′ ◦F )

for all n ∈N.

Lemma 5.8. Let G be a flat affine k-groupoid scheme acting on S = Spec(R). Let M , N ,V be G-
modules. If V is finitely generated and projective as an R-module, then we have for all n ∈ N a
canonical isomorphism

Extn
G (M ,V ⊗N ) ' Extn

G

(
M ⊗V ∗, N

)
.

Proof. We have a canonical isomorphism

Hom(M ,V ⊗N ) ' Hom
(
M ⊗V ∗, N

)
(17)

sending any ϕ to the map m ⊗α 7→ (α⊗ i dN ) (ϕ(m)). Indeed, we have the inverse map

Hom(M ,V ⊗N ) → Hom(M ⊗V ∗, N )
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sending any ψ to the map m 7→α⊗ψ(m⊗α∗) where α ∈V such that α∗(α) = 1. We see that (17)
is functorial in N and can be interpreted as an isomorphism of functors

HomG (M ,−)◦ (V ⊗−) ∼= HomG (M ⊗V ∗,−).

We see that the functor (V ⊗−) is exact and maps injective G-module to injective G-module (see
Lemma 5.1-(3)). Therefore, we can apply Remark 5.7-(2). �

Remark 5.9. Let G be a flat affine k-groupoid scheme acting on S = Spec(R) and H be its flat
subgroupoid scheme. Then IndG

H (−) is left exact functor. Thus, we can take the right derived
functor RnIndG

H (−).

Lemma 5.10. Let G be a flat affine k-groupoid scheme acting on S = Spec(R) and H be its flat
subgroupoid scheme. Let W be an H-module. There is a spectral sequence with

E p,q
2 = Hp (

G ,Rq IndG
H W

)⇒ Hp+q (H ,W ).

Proof. (1). Lemma 5.4 can be interpreted as an isomorphism of functors (choose V = R)

HomG (R,−)◦ IndG
H ' HomH (R,−).

Since IndG
H is right adjoint to the exact functor restricting G-module to H , the functor IndG

H
maps injective H-modules to injective G-modules. Hence, we can apply Grothendieck’s spec-
tral sequence. �

Definition 5.11. Let G be an affine k-groupoid scheme acting on S = Spec(R) and H be its flat
subgroupoid scheme. We call H exact in G if IndG

H is an exact functor.

Using Lemma 5.10, we have the following result.

Proposition 5.12 (Shapiro’s lemma). Let G be a flat affine k-groupoid scheme acting on S =
Spec(R) and H be its flat subgroupoid scheme. Suppose that H is exact in G. Let W be an H-
module. For each n ∈N, there is an isomorphism

Hn (
G , IndG

H W
)' Hn(H ,W ).

Since IndG
1 =−⊗t O (G) is an exact functor, we have the following result.

Corollary 5.13. Let G be a flat affine k-groupoid scheme acting on S = Spec(R) and H be its flat
subgroupoid scheme. Let n ∈N. We have for each G-module V :

Hn(G ,V ⊗t O (G)) '
{

V if n = 0,
0 if n > 0.

Lemma 5.14. Let G be a flat affine k-groupoid scheme acting on S = Spec(R) and H be its flat
subgroupoid scheme. We have for each H-module V and each n ∈N an isomorphism of k-vector
spaces

Hn(H ,V ⊗t O (G)) ' (
RnIndG

H

)
V.

Proof. The proof is based on the way we define the induction functor. Indeed, the definition of
IndG

H yields an isomorphism of functors

For◦ IndG
H ' (−)H ◦ (−⊗t O (G)),
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where For is the forgetful functor from Rep(R : G) to R-modules. Since the functor (−⊗t O (G)) is
exact and maps injective H-modules to modules acyclic for the fixed points functor (see Corol-
lary 5.13-(1)), we can apply Remark 5.7-(1),(2) and the result is as follows. �

5.1.5. Induction functors and injective objects.

Proposition 5.15. Let G be a flat affine k-groupoid scheme acting on S = Spec(R) and H be its
flat subgroupoid scheme. If O (G) is an injective H-module, then H is exact in G .

Proof. Since O (G) is an injective H-module, there exist H-module V1 such that O (G) is a direct
summand of V1⊗t O (G) (see Lemma 5.1-(2)). Hence, V ⊗t O (G) is direct summand of V2⊗t O (G)
for V ,V2 are H-module. By Lemma 5.14 and Corollary 5.13, we have

Hn(H ,V ⊗t O (G)) ' (
RnIndG

H

)
V '

{
V if n = 0,
0 if n > 0.

This implies that H is exact in G . �

Remark 5.16. In the argument of the proof of Corollary 5.6, we see that IndΠ(X /k)
L is exact.

The other direction in Corollary 5.15 is not true in general. However, we have the following
result.

Lemma 5.17. Let L be a kernel of f :Π(X /k) −→Π(S/k,F ). Then Res(O (Π(X /k))) is an injective
L-module.

Proof. We assume that V is a finite L-module. By Lemma 5.8, Lemma 5.14, Remark 5.16

Extn
L (V ,O (Π(X /k))) ' Extn

L

(
R,V ∨⊗t O (Π(X /k))

)' H n (
L,V ∨⊗t O (Π(X /k))

)= 0

for all n > 0. Therefore, the functor HomL(−,O (Π(X /k))) is exact when restricted to finite L-
modules. Since L is Tannaka duality over dedekind ring (Theorem 3.2), each L-module is the di-
rect limit of finite L-modules. This implies the exactness on all L-modules, that is, Res(O (Π(X /k))))
is an injective L-module. �

5.2. The Gauss-Manin connection from the Tannaka viewpoint. Let L be a kernel of f :Π(X /k) −→
Π(S/k,F ). We consider an absolute connection (V ,∇) ∈ Ob(C (X /k)) together with its fiber
functor V = η∗(V ) ∈ Ob(ModR ) . We claim that the finite R-module H0(L,V ) is a Π(R/k) rep-
resentation in a natural way. Indeed, for

(a,b) : T → Spec(R)×k Spec(R)

and gab ∈Π(R/k)(T ), consider g̃ab ∈Π(X /k)(T ) a preimage. Then (see Appendix A.2.2)

g̃−1
ab ◦ g̃ab : a∗V → b∗V → a∗V

is the identity on a∗ (
V L

)
as g̃−1

ab ◦ g̃ab ∈ L(T )aa . Thus the lifting g̃ab yields a well-defined action
of Π(R/k) on H0(L,V ).

One considers the following diagram of functors:
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Rep(R :Π(X /k)) Rep(R :Π(R/k))

MIC(X /k) MIC(R/k).

H0(L,V )

H0
dR (X ,Inf(V ))

According to Lemma 2.3, the canonical morphism

H0(L,V ) −→ H0
DR (X /R, Inf(V ))

is an isomorphism. Thus the above diagram is commutative. As a consequence, we obtain,
canonical morphisms

Hn(Π(X /k),ResΠ(X /k)
L (V )) = Rn

Π(X /k)H
0(L,V ) −→ Rn

DR H0
DR (X /R, (Inf(V ))

where, on the left-hand side, the derived functor is taken in Rep(R : Π(X /k)) and on the right-
hand side, the derived functor is taken in MIC(X /k). We know that the right-hand side is the
nth relative de Rham cohomology,

Hn
DR(X /R, (Inf(V )) = Rn

MICHo
DR(X,(Inf(V )).

Theorem 5.18. Let W ∈ Rep f (R : G) and V be the restriction of W to Rep◦
R (L). For n ≥ 0. The

canonical homomorphism

Hn(Π(X /k),ResΠ(X /k)
L (V )) −→ Hn(L,V )

is an isomorphism. Consequently, it induces a representation of Π(R/k) on Hn(L,V ) which has
the property that the canonical homomorphism

Hi (L,V ) −→ Hi
DR (X , Inf(V )) i = 0,1,2;

is Π(R/k)-equivariant.

Proof. We first construct the morphism Hn(Π(X /k),ResΠ(X /k)
L (V )) −→ Hn(L,V ). We can take the

injective resolution for G-module W as follows:

0 −→W −→ F1 −→ F2 −→ F3 −→ ·· ·(18)

Apply the restriction functor to the above resolution to get

0 −→V −→ Res(F1) −→ Res(F2) −→ Res(F3) −→ ·· ·(19)

We will show that Res(Fi ) is injective L-module for i > 0. This implies that restriction functor
from Resolution (18) to Resolution (19) give us the canonical map from Hn(Π(X /k),ResΠ(X /k)

L (V ))
to Hn(L,V ). Moreover, this canonical map is isomorphism via the Remark 5.7-(2). Before prov-
ing Res(Fi ) is injective L-module for i > 0, we need the following claim.

Claim. Let R be a dedekind domain. Let M and N be injective R-modules. Then M ⊗N is
injective R-module.

Verification. We prove this claim by Baer’s criterion, i.e., we show that

Ext1
R (R/I , M ⊗N ) = 0
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for all ideal I of R. Since R/I is finite generated R-module, the extension functor Ext1 commute
with localization at every prime ideal P of R, that is,

Exti
R (R/I , M ⊗N )P ∼= Ext1

RP
((R/I )P, MP⊗R NP)

for all P ∈ Spec(R). Using Baer’s criterion again we see that M ⊗N is injective R-module if and
only if (M ⊗N )P is injective RP-module for all P ∈ R. We have two cases to consider:

(1) In case of P= 0. We have (M ⊗N )P is injective RP-module since RP is field.
(2) In case of P 6= 0. The localization ring RP is DVR so the module MP⊗ NP is injective

as RP-module (It is well-known that tensor of injective modules over PID is injective
module).

We conclude that M ⊗N is injective R-module. �

We turn to prove that restriction of injective G-module to L-module is injective. Let F
be injective G-module. By Lemma 5.1-(2), F is a direct summand of some I ⊗t O (G) where I
is G-module with trivial action and injective as R-module. Since restriction functor commute
with direct sum and tensor product, we have Res(F ) is direct summand of I ⊗Res(O (G)). Using
Lemma 5.17 and Lemma 5.1-(2), we see that Res(F ) is direct summand of I ⊗ J ⊗O (L) where J
is G-module with trivial action and injective as R-module. The above claim show that I ⊗ J is
R-injective module, so Lemma 5.1-(2) implies that Res(F ) is injective L-module.

The rest of the theorem true via Corollary 4.6. �

Remark 5.19. Theorem 5.18 show that the cohomology of groupoid scheme with coefficient
restrict to suitable group scheme equal to cohomology of group scheme. This is analogue to the
case de Rham cohomology of inflation connection.

APPENDIX A. AFFINE GROUP SCHEMES AND GROUPOID SCHEMES

A.1. Affine group schemes and representations over a Dedekind domain. Our reference is
[DH18] and [De90], see also [Ja87, Sa72].

Let k be a field of characteristic 0. Let R be a k-algebra, which is a Dedekind ring.

A.1.1. Representations. Let G be a flat affine group scheme over R. We denote by RepR (G) the
category of finite G-representations in R-modules, that is, finite R-modules equipped with a
(rational) action of G . As G is flat, this is an abelian category, further, it is a tensor category. The
full subcategory consisting of R-projective representations will be denoted by Rep◦

R (G). This is
an R-linear, additive, rigid tensor category and is a subcategory of definition, i.e. each object of
RepR (G) is a quotient of an object in Rep◦

R (G).

As R is a Dedekind ring, torsion free, flat and projective finite R-modules are the same.
We say that M ⊂ N is a special subobject in RepR (G) if the quotient N /M is R-flat. A special
subquotient is a special sub of a quotient or, equivalently, a quotient of a special sub. This can
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be seen from the following diagram, where the left square is a push-out or, equivalently, a pull-
back:

Q �
� //

����
�

P

����

// P/Q

'
��

M �
� // N // M/N .

Thus, if N /M ∼= P/Q is R-flat then M is a special subquotient of P : it is a quotient of a special
sub Q and a special sub of N .

A.1.2. Morphisms of flat affine group schemes. We study in this subsection flat affine group
schemes and morphisms between them. Let f : G →G ′ be a homomorphism of flat affine group
schemes over R. We say that f is surjective or a quotient map if it is faithfully flat.

Theorem A.1 (Theorem 4.1.2 [DH18]). Let f : G −→G ′ be a homomorphism of affine flat groups
over R, and ω◦

f be the corresponding functor Rep◦
R (G ′) −→ Rep◦

R (G).

(1) f is faithfully flat if and only if ω f
◦ : Rep◦

R (G ′) −→ Rep◦
R (G) is fully faithful and its image

is closed under taking subobjects.
(2) f is a closed immersion if and only if every object of Rep◦

R (G) is isomorphic to a special
subquotient of an object of the form ω f (X ′), X ′ ∈ Rep◦

R (G ′).

A.1.3. Exact sequence of flat affine group schemes. Let G −→ A be a homomorphism of affine
group schemes over R. The kernel of this map is defined to be

L :=G ×A Spec(R).

This is a closed subgroup of G . Let I A be the kernel of counit ε : O (A) −→ R, i.e. the augmen-
tation ideal of O (A), and let I AO (G) be the ideal generated by the image of I A in O (G). Then
coordinate ring of L is isomorphic to O (G)/I AO (G). The sequence

1 // L
q
// G

p
// A // 1

is said to be exact if p is a quotient map with kernel L. We will provide a criterion for the exact-
ness in terms of the functors

Rep◦
R (A)

p∗
// Rep◦

R (G)
q∗
// Rep◦

R (L).(20)

Theorem A.2 (Theorem 4.2.2 [DH18]). Let us be given a sequence of homomorphisms

L
q
// G

p
// A

with q a closed immersion and p faithfully flat. Then this sequence is exact if and only if the
following conditions are fulfilled:

(a) For an object V ∈ Rep◦
R (G), q∗(V ) in Rep◦

R (L) is trivial if and only if V ∼= p∗U for some
U ∈ Rep◦

R (A).
(b) Let W0 be the maximal trivial subobject of q∗(V ) in Rep◦

R (L). Then there exists V0 ⊂ V ∈
Rep◦

R (G), such that q∗(V0) ∼=W0.
(c) Any W ∈ Rep◦

R (L) is a quotient in (hence, by taking duals, a subobject of) q∗(V ) for some
V ∈ Rep◦

R (G).
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A.2. Groupoid schemes. Our reference [De90], Section 3.

Let S be a k-scheme. An affine k-groupoid scheme acting on S is an S ×k S-affine scheme
G (with the structure maps being s, t : G → S, which are called the source and the target maps),
together with the following data:

(i) a map m : G s×t G → G , called the product of G , satisfying the following associativity
property:

m(m s×t idG ) = m(idG s×t m)

(ii) a map ε : S →G , called the unit element map, satisfying:

m(ε s×t idG ) = m(idG s×t m) = idG

(iii) a map ι : G →G , called the inverse map, satisfying:

ι◦ s = t ; ι◦ t = s

m(ι s×t idG ) = ε◦ s, m(idG s×t ι) = ε◦ t ,

where s×t denotes the fiber product over S with respect to the maps s and t .

The groupoid scheme G said to be acting transitively on S if for any pair of morphism
(a,b) : T ×U → S, if there is a faithfully flat quasi-compact map φ : W → T ×U such that the set

MorS×S(W,G) 6= ;.

This implies that (s, t ) : G → S ×S is a faithfully flat map.

A.2.1. The diagonal group scheme. Define the diagonal group scheme G∆ of G as the pull-back
of G along the diagonal map ∆ : S −→ S ×S.

G∆ //

��

G

��
S // S ×k S.

A.2.2. Representations. Let V be a quasi-coherent sheaf on S. A representation of G in V is an
operation ρ, that assigns to each k-schema T and each morphism φ : T →G a T -isomorphism

ρ(φ) : a∗V → b∗V(21)

where (a,b) = (s, t )φ, the source and the target of φ, and a∗ (resp. b∗) denotes the pull-back of
V along a (resp. b). One requires that this operation be compatible with the composition law
of the groupoid (S(T ),G(T )) and with the base change. The latter means: for any morphism
r : T ′ → T

ρ(r ∗φ) = r ∗ρ(φ).(22)

A representation is called finite if the underlying sheaf is coherent. We denote this category by
Rep(S : G) and denote the full subcategory of finite representations by Rep f (S : G).

Assume that G acts transitively on S, then finite representations of G are locally free as
sheaves on S. Moreover, they form a k-linear rigid tensor abelian category. Being equipped
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with a fiber functor – the forgetful functor to quasi-coherent sheaves on S, Rep(S : G) is a (non-
neutral) Tannakian category. Each object of Rep(S : G) is a filtered union of its finite rank sub-
representations.

A.2.3. The coordinate ring. We let S be affine, S = Spec(R) and let G be affine, its coordinate ring
is denoted O (G). The groupoid structure on G induces the structures of a Hopf algebroid on
O (G). The source and the target map for G induce algebra maps s, t : R →O (G). The transitivity
of G on S can be rephrased by saying that O (G) is faithfully flat over R ⊗k R with respect to the
base map t ⊗k s : R ⊗k R →O (G).

The composition law for G induces an R ⊗k R-algebra map

∆ : O (G) −→O (G) s⊗t O (G).(23)

satisfying (∆⊗ id)∆= (id⊗∆)∆. The unit element of G induces a R ⊗k R-algebra map

ε : O (G) −→ R(24)

where R ⊗k R acts on R diagonally (i.e., (λ⊗k µ)ν=λµν). One has

m(ε⊗ id)∆= m(id⊗ε)∆= id(25)

Finally, the operation which consists of taking the inverse in G induces an automorphism
ι of O (G) which interchanges the actions t and s:

ι(t (λ)s(µ)h) = s(λ)t (µ)ι(h),(26)

and satisfies the following equations:

m(ι⊗ id)∆= s ◦ε m(id⊗ ι)∆= t ◦ε.(27)

Since S = Spec(R), quasi-coherent sheaves on S are R-modules and coherent sheaves are finite
R-module. The category of representations of G in S is also denoted by Rep(R : G). A repre-
sentation ρ of G in V induces a map ρ : V → V ⊗t O (G), called coaction of O (G) on V , such
that

(idV ⊗∆)ρ = (ρ⊗ idV ), (idV ⊗ε)ρ = idV .(28)

An R-module equipped with such an action is called O (G)-comodule. Conversely, any coaction
of O (G) on an R-module V defines a representation of G in V . In fact, we have an equivalence
between the category of G-representations and the category of O (G)-comodules. The discus-
sion in the previous subsection shows that V is projective over R.

In particular, the coproduct on O (G) can be considered as a coaction of O (G) on itself and
hence defines a representation of G in H , called the right regular representation.

A.2.4. Morphisms. A morphims of k-groupoid schemes acting on a k-scheme S is a morphism
of the underlying k-schemes which is compatible with all structure maps. We define the kernel
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of a homomorphism f : G1 →G as the fiber product ker f := S ×G G1:

ker f
f

//

��

G

��
S // S ×S.

Thus ker f is a group scheme over S. Taking the diagonal group schemes, we see that ker f is
isomorphic to the kernel of the homomorphism G∆

1 →G∆ of group schemes:

ker f // G1
f
// G

ker f ∆ // G∆
1

f ∆
//

OO

G∆.

OO

Indeed, the canonical map ker f ∆ −→ ker f comes from the definition of ker f and the (outer)
commutative diagram

ker f ∆ //

��

G∆
1

//

��

G1

f
��

S // G∆ // G .

And the canonical map ker f −→ ker f ∆ comes from the map ker f −→ G∆
1 which satisfies the

commutative diagram

ker f //

��

G∆
1

��

S // G∆.

A.2.5. The functor IndG
G∆ . In this subsection, we extend the result of [EH06].

We continue to assume S and G are affine, S = Spec(R). For any representation W ∈
RepR (G∆), set

IndG
G∆(W ) := (W ⊗t O (G))G∆

(29)

where G∆ acts on W as usual and on O (G) through the right regular action of G on O (G) (i.e
O (G) is a right G-module). On this invariant space, G acts through the left regular action on
O (G). Thus IndG

G∆ is a functor RepR (G∆) → Rep(S : G).

The space IndG
G∆(W ) can also be given as the equalizer of the maps

p : W ⊗t O (G)
ρW ⊗id−→ W ⊗O (G∆)⊗t O (G)

q : W ⊗t O (G)
id⊗∆−→ W ⊗t O (G) s⊗t O (G)

π−→W ⊗O (G∆)⊗t O (G)
(30)

where ρW : W →W ⊗O (G∆) is the coaction of O (G∆) on W , ∆ is the coproduct on O (G).
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There exists a functorial isomorphism

HomG (V , IndG
G∆(W )) ∼= HomG∆(V ,W ),(31)

V ∈ Rep(S : G),W ∈ RepR (G∆), i.e., IndG
G∆ is the right adjoint to the functor restricting G-representations

to G∆.

Theorem A.3 (Cf. [EH06, Remark 6.7]). The functor IndG
G∆ is faithfully exact. Hence the canonical

map

IndG
G∆(W ) −→W

is surjective for any G-representation W .

Proof. Before giving the proof of this theorem, we discuss the algebra O (G∆). By definition of
G∆, we have

O
(
G∆

)∼=O (G)⊗R⊗k R R

where R ⊗k R → R is the product map. Then J := Ker(R ⊗k R → R) is generated by elements of
the form λ⊗ 1− 1⊗λ,λ ∈ R. Since O (G) is faithful over R ⊗k R, tensoring the exact sequence
0 → J → R ⊗k R → R → 0 with O (G) over R ⊗k R, one obtains an exact sequence

0 −→ JO (G) −→O (G)
π−→O

(
G∆

)−→ 0.(32)

That is, we can identify J⊗R⊗k RO (G) with its image JO (G) in O (G). In order to prove the faithfully
exactness of IndG

G∆ , we need the following claim.

Claim. Let us use the following notation of Sweedler for the coproduct on O (G) :

∆(g ) =∑
(g )

g(1) ⊗ g(2).

The following map:

(33)
ϕ : O (G)⊗R⊗k R O (G) −→O

(
G∆

)⊗t O (G),

g ⊗h 7−→∑
(g )
π

(
g(1)

)⊗ g(2)h,

is an isomorphism, where π is defined in the formula 32.

Verification. We define the inverse map to this map. Let

ψ̄ : O (G)s ⊗t O (G) −→O (G)⊗R⊗k R O (G)

be the map that maps g ⊗h 7→∑
(g ) g(1) ⊗ ι

(
g(2)

)
h. We have for λ ∈ R and for t , s : R →O (G)

ψ̄
(
t (λ)g s⊗t h

)=∑
(g )

g(1) ⊗ ι
(
t (λ)g(2)

)
h

=∑
g

g(1) ⊗R⊗k R s(λ)ι
(
g(2)

)
h by (26)

= s(λ)
∑
g

g(1) ⊗R⊗k R ι
(
g(2)

)
h

= ψ̄(
s(λ)g s⊗t h

)
.
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Thus ψ̄ maps JO (G) s⊗t O (G) to 0, hence factors through a map

ψ : O
(
G∆

)⊗t O (G) →O (G)⊗R⊗k R O (G).

Checking ϕψ= id,ψϕ= id can be easily done using the property (27) of ι.

We now prove that the functor IndG
G∆ is faithfully exact. Let W ∈ RepR (G∆). Tensoring the

isomorphism in (33) with W and applying the functor (−)G∆
, we obtain the following map

(34)
Φ : IndG

G∆(W )⊗R⊗k R O (G)
∼=−→W ⊗t O (G),

w ⊗ g ⊗h 7−→ w ⊗ g h.

The above map is isomorphism since we have its inverse as follows:

W ⊗t O (G) −→W ⊗O
(
G∆

)⊗O (G)
Ψ−→W ⊗t O (G)⊗R⊗k R O (G),

Ψ= (
idW ⊗ψ)(

ρW ⊗ id
)

.

According to (34), the functor

IndG
G∆(−)⊗R⊗k R O (G) ∼= (−)⊗t O (G)

hence is exact. Since O (G) is faithfully flat over R ⊗k R, the functor IndG
G∆ is faithfully exact.

We now prove the last part of the theorem. Setting V = IndG
G∆(W ) in (31), we define the

canonical uW : IndG
G∆(W ) →W as follows:

HomG (IndG
G∆(W ), IndG

G∆(W )) −→ HomG∆(IndG
G∆(W ),W )

id 7−→ uW .

The map uW is nonzero whenever W is nonzero. Indeed, since IndG
G∆ is faithfully exact, IndG

G∆(W )
is nonzero whenever W is nonzero. Thus, if uW = 0, then both sides of (31) are zero for any V .
On the other hand, the right-hand side contains the identity map. This shows that uW cannot
vanish.

We now turn to show that uW is surjective. Let U = Im(uW ) and let T =W /U. We have the
following diagram:

0 // IndG
G∆(U ) //

��

IndG
G∆(W ) //

��

IndG
G∆(T )

��

// 0

0 // U // W // T // 0.

The composition IndG
G∆(W ) → IndG

G∆(T ) → T is 0, therefore IndG
G∆(T ) → T is a zero map,

implying T = 0. �

Corollary A.4. Any G∆-representation is a quotient of a G-representation. Consequently, any
R-projective representation of G∆ also a special subobject of a G-representation.

Proof. Let W be a representation of G∆ and uW : IndG
G∆(W ) −→ W be the canonical map in

Theorem A.3. This theorem implies that W is a quotient of IndG
G∆(W ).
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We now prove the rest of the corollary. Since IndG
G∆(W ) is a union of its finite subrepresen-

tations, we can therefore find a finite G-subrepresentation W0(W ) of IndG
G∆(W ), which still maps

surjectively on W . In order to obtain the statement on the embedding of R-projective represen-
tation W , one repeat the above argument for (W ∨) to get the surjective map W0(W ∨) � W ∨,
and dualizes to W ,−→ (W0(W ∨))∨. �

A.3. Tannakian duality over a field. Reference for this subsection is [DM82] and [De90].

Definition A.5. A rigid abelian tensor category C equipped with an exact faithful k-linear tensor
functor ω : C → Veck is called a neutral Tannakian category over k if. The functor ω is called a
fibre functor for C .

Theorem A.6. Let (C ,ω) be a neutral Tannakian category. Then, there exists a k-group scheme
G, such that ω induces an equivalence between C and Repk (G).

The group scheme G above is called the Tannakian group of the category (C ,ω).

An example of a Tannakian category is the category of finite dimensional representations
of an affine group scheme G over k, equipped with the forgetful functor of k-vector spaces. The
resulting Tannakian group is isomorphic to G .

Another example, which is an object of this work, is the category of connections defined
subsequently.

Definition A.7. A rigid abelian tensor category C equipped with an exact faithful k-linear tensor
functor ω : C → modR, R is a k-algebra, is called a (general) Tannakian category over k if. The
functor ω is called a fibre functor for C with values in R-modules.

Theorem A.8. Let (C ,ω) be a general Tannakian category with values in R-modules. Then, there
exists a k-groupoid scheme C , acting transitively upon SpecR ×k SpecR such that ω induces an
equivalence between C and Rep(R : G ).

The groupoid G is called the Tannakian groupoid of (C ,ω). Conversely, if we start from
a groupoid scheme G acting transitively upon a ring R, then Rep(R : G ) equipped with the for-
getful functor is a Tannakian category. The corresponding Tannakian groupoid is isomorphic
to G .

A.4. Tannakian duality over a Dedekind ring. Reference for this subsection is [Sa72], see also
[DH18].

Assume that C is an R-linear abelian tensor category. Denote by C o the full subcategory
of C consisting of rigid objects. We say that C is dominated by C o if each object of C is a
quotient of a rigid object.

Definition A.9. A (neutral) Tannakian category over a Dedekind ring R is an R-linear abelian
tensor category C , dominated by C o, together with an exact faithful tensor functor ω : C →
Mod(R).
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Theorem A.10 ([Sa72, Thm. II.4.1.1]). Let (C ,ω) be a neutral Tannakian category over a Dedekind
ring R. Then the group functor A 7→Aut⊗A(ω⊗ A) is representable by a flat group scheme G and ω
factors through an equivalence between C and RepR (G).

APPENDIX B. MORPHISMS BETWEEN AFFINE FLAT GROUP SCHEMES

Let R be a Dedekind domain. We denote FGSch/R be the full subcategory of the cate-
gory of affine group scheme over R whose objects are R-flat. Let Π ∈ FGSch/R. We recall some
concepts:

(1) A subcomodule M of an R[Π]-comodule N is said to be special if N /M is flat over R; a
special subquotient M of an R[Π]-comodule N is a special submodule of a quotient of
N , or, equivalently, a quotient of a special submodule of N .

(2) Let N be an R[Π]−comodule. Then Ntor, the R-torsion submodule of N is an R[Π]-
subcomodule. Hence for any R[Π]-subcomodule M , the preimage of (N /M)tor in N ,
denoted M sat , is an R[Π]-comodule. Since R is a Dedekind ring, the quotient N /M sat is
flat, being torsion-free. Thus M sat is the smallest special subcomodule of N , containing
M . It is called the saturation of M in N .

Definition B.1. Let H′ be a flat Hopf algebra over R. A Hopf subalgebra H of H′ is an R-submodule
equipped with a Hopf algebra structure such that the inclusion H → H′ is a homomorphism of
Hopf algebras. We say that H is saturated in H′ if H′/H is flat as an R-module.

Let ρ :Π→ G be a morphism in FGSch/R. We describe the “images" of ρ in two ways.

Definition B.2 (The diptych). Define Ψρ as the group scheme whose Hopf algebra is the image
of R[G] in R[Π]. Define R[Ψ′

ρ] as the saturation of the latter inside R[Π]. The obvious commu-
tative diagram

ψ′
ρ

// ψρ

��
Π

ρ
//

OO

G

is called the diptych of ρ.

Remark B.3. We have

(1) The image of a Hopf algebra homomorphism is a Hopf subalgebra (of the target).
(2) Implicit in the above definition is the fact that R[Ψ′

ρ] is a Hopf algebra. Indeed, we have
the filtration

R[Ψ′
ρ]sat ⊗R[Ψ′

ρ]sat ⊂ R[Ψ′
ρ]sat ⊗R[Π] ⊂ R[Π]⊗R[Π],

the successive quotients of which are flat, hence R[Π]⊗R[Π]/R[Ψ′
ρ]sat ⊗R[Ψ′

ρ]sat is also
flat. Thus

(R[Ψ′
ρ]⊗R[Ψ′

ρ])sat ⊂ R[Ψ′
ρ]sat ⊗R[Ψ′

ρ]sat .
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Hence, by the definition of R[Ψ′
ρ]sat , we have

∆
(
R[Ψ′

ρ]sat
)
⊂ (R[Ψ′

ρ]⊗R[Ψ′
ρ])sat ⊂ R[Ψ′

ρ]sat ⊗R[Ψ′
ρ]sat .

Lemma B.4. The morphism Π→Ψ′
ρ is faithfully flat.

Proof. See [DH18, Theorem 4.1.1]. �

Proposition B.5. If Ψ′
ρ,k → Ψρ,k is faithfully flat for every residue field k, then Ψ′

ρ → Ψρ is an
isomorphism.

Proof. By construction, R
[
Ψρ

]→ R[Ψ′
ρ] is injective and K [Ψρ] = K [Ψ′

ρ]. Since Ψ′
ρ,k is faithfully

flat over Ψρ,k for k being either the fraction field or any residue field of R, then Ψ′
ρ is faithfully

flat over Ψρ by Proposition 3.2 in [DHH17]. The faithful flatness of R[Ψ′
ρ] over R[Ψρ] implies

that R[Ψρ] is saturated in R[Ψ′
ρ]. Indeed, tensoring the exact sequence

0 → R[Ψρ] → R[Ψ′
ρ] → R[Ψ′

ρ]/R[Ψρ] → 0

on the right with R[Ψ′
ρ] over R[Ψρ] we obtain a split exact sequence (the splitting is given by

the map R[Ψ′
ρ]⊗R[Ψρ] R[Ψ′

ρ] → R[Ψ′
ρ],m⊗n 7→ mn). By assumption R[Ψ′

ρ] is R-flat, hence so is
R[Ψ′

ρ]⊗R[Ψρ] R[Ψ′
ρ]. Consequently R[Ψ′

ρ]/R[Ψρ]⊗R[Ψρ] R[Ψ′
ρ] is R-flat. Now the faithful flatness

of R[Ψ′
ρ] over R[Ψρ] implies that R[Ψ′

ρ]/R[Ψρ] is R-flat, that is, R[Ψρ] is saturated in R[Ψ′
ρ] as

an R-module. �

Over the residue field k, there is yet another interesting group scheme in sight: the image
of ρk . We then have the triptych of ρ, which is the commutative diagram

Ψ′
ρ,k Ψρ,k

Im(ρk )

Πk Gk

OOOO
//

�� ��

��

/�

??

� o

��
//

?? ??

.(35)

Together with Proposition B.5, diagram (35) proves the following:

Corollary B.6. The following claims are true.

i) If Im
(
ρk

)→Ψρ,k is an isomorphism for every residue field k, then Ψ′
ρ →Ψρ is an isomor-

phism.
ii) If Ψ′

ρ →Ψρ is an isomorphism, then Im
(
ρk

)→Ψρ,k is an isomorphism.
iii) The image of Ψ′

ρ,k in Ψρ,k is none other than Im
(
ρk

)
.

We have some notations, conventions and standard terminology.
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(1) If V is a finite R-projective module, we write GL(V ) for the general linear group scheme
representing A −→ AutA(V ⊗ A). If V = Rn , then GL(V ) = GLn .

(2) An object V of Rep◦
R (G) is said to be a faithful representation if the resulting morphism

G −→ GL(V ) is a closed immersion. Similar conventions are in force for group schemes
over k. We admonish the reader that this is not the terminology of the authoritative
[SGA3], where a faithful action is decreed to be one having no kernel (see Definition
2.3.6.2 of exposé I).

Let Π ∈ FGSch/R. This group scheme admits a closed embedding into some GLn,R as J.S.
Milne mention in Aside 9.4 of his book [Mi12], or, according to the above notions,Π possesses a
faithful representation. We remark on the concept of special subquotient which we introduced
in Subsection A.1.1.

Definition B.7. Let Π ∈ FGSch/R and V ∈ Rep◦
R (Π). Call an object V ′′ ∈ Rep◦

R (Π) a special sub-
quotient of V if there exists a special monomorphism V ′ → V and an epimorphism V ′ → V ′′.
The category of all special sub-quotients of various T a1,b1 ( V)⊕ ·· · ⊕T am ,bm (V) is denoted by
〈V 〉s⊗.

Let V be a finite R- projective module and assume that our G (in the diptych) equals
GL(V). We now interpret Ψρ and Ψ′

ρ in terms of their representation categories.

Proposition B.8. Let V be an object of Rep◦
R(Π) and ρ be the natural homomorphism Π→ G :=

GL(V).

(1) The obvious functor RepR

(
Ψρ

) → RepR (Π) defines an equivalence of categories between
Rep◦

R

(
Ψρ

)
and 〈V 〉s⊗.

(2) The obvious functor RepR

(
Ψ′
ρ

)
→ RepR (Π) defines an equivalence between RepR

(
Ψ′
ρ

)
and 〈V〉⊗.

Proof. We prove by adapting the proofs in [dS09, Proposition 12]. We begin by remark some
notions in [dS09, Sections 3.1 and 3.2] which will be modified slightly for our setting. We denote
δ as a determinant representation of V : it is a locally R-module of rank one where Ψρ acts via
the group-like element δ of Ψρ (see determinant of a finite projective module in [Stack, 0FJ9]).
Since V is projective then V is direct summand of finite free module M with rank d , and we
define

ΘM (a) =
(
1⊕ (M d )⊗1 ⊕ . . . (M d )⊗a

)
(a ∈N).

There are natural arrows in RepR (Ψρ)

θa :ΘM (a) −→ (R[Ψρ],ρr ),

where (R[Ψρ],ρr ) is regular representation ofΨρ. Indeed, we will construct the map θa steps by
steps. Take mi is a basis of M and let mi j be a basis of M d . The comodule map for M d is

mi j 7→
∑
`

vi`⊗ρ` j ,
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by mapping mi j to ρi j gives the Ψρ-equivariant map V d −→ (R[Ψρ],ρr ). We can extend this to
any tensor power (V d )⊗a −→ (R[Ψρ],ρr ), that is, the map θa sends a pure tensor

mI1 ⊗·· ·⊗mIa ∈
(
M d

)⊗a
, I ∈ {1, . . . ,d}× {1, . . . ,d}

to the element

ρI1 · · ·ρIa .

We now define

ΘV (a,b,1) =
(
1⊕ (V d )⊗1 ⊕ . . . (V d )⊗a

)
⊗ (δ−1)⊗b ;

ΘV (a,b,c) =ΘV (a,b,1)⊗c (a,b,c ∈N).

There are natural arrows in RepR (Ψρ)

θa,b,c :ΘV (a,b,c) −→ (R[Ψρ],ρr )

defined by arrows

θa,b,1 : (V d )⊗a ⊗ (δ−1)⊗b −→ (R[Ψρ],ρr )

as follows. We restriction the map θa to (V d )⊗a and then multiplication by group like element
δ, that is, we map the pure tensor v I1 ⊗·· ·⊗ v Ia ∈

(
V d

)⊗a
to δ−b ·ρI1 · · ·ρIa instead.

Let V be a finite projective R[Ψρ]-comodule. The coaction ρ : V −→ V⊗R[Ψρ] induces a
map

Cf : V ∨⊗V −→ R[Ψρ], ϕ⊗m 7→∑
ϕ (mi )m′

i , ϕ ∈V ∨,m ∈V ,∆(m) =∑
i

mi ⊗m′
i .

The image of this map, denoted by Cf(V), is called the coefficient space of V. Before giving the
proof of (1), we denote

SV := ⋃
a≥1

Imθa,0,1, S′
V = ⋃

a,b≥1
Imθa,b,1.

These are Ψρ-submodules of (R[Ψρ],ρr ). The proof of (1) is a consequence of the following
claims.

Claim 1. Assume that the projective module V is faithful. Then any finite projective rep-
resentation W is belongs to 〈V 〉s⊗.

Verification. Assume that Ψρ-module W is free module of rank r. We embed W equivari-
antly in (R[Ψρ],ρ)⊕r . As the representation V is faithful, we have R[Ψρ] = S′

V and by tensoring
with some δ⊗b we have W ⊗δ⊗b ⊆ S⊕r

V . Hence W ⊗δ⊗b is a special sub-object of some Imθa,0,r

[dS09, Lemma 11]. By the Snake Lemma

Imθa,0,r /W ⊗δ⊗b ∼=Θ(a,0,r )/θ−1
a,0,r

(
W ⊗δ⊗b

)
and we see that W is a special sub-quotient of Θ(a,b,r ). It is clear that ΘV (a,b,c) belongs to
〈V 〉s⊗, so W also belongs to 〈V 〉s⊗. Finally, since every finite projective is a direct summand of the
finite free module, the result as follows.

Claim 2. If any finite projective representation of Ψρ belongs to 〈V 〉s⊗, then V is faithful.
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Verification. Let W ⊆ (
R[Ψρ],ρr

)
be a G-submodule of finite rank. Since V is projective,

then there exists projective module I such that V ⊕ I = M where M is R-free module. We con-
sider M as G-module with the action of G on I is trivial. Choose U ⊆∑s

1 T ai ,bi (M) special such
that W is a quotient and U /W is R-free module. Then

W ⊆ Cf(W ) ⊆ Cf(U ) ⊆ Cf

( s∑
1

T ai ,bi (M)

)
⊆ S′

M

via [dS09, Claim in Proposition 12] and [DH18, 1.1.5]. This shows that R[Ψρ] = S′
M i.e. M is

faithful. We conclude that V is also faithful since the action of G on I is trivial.

Proof of (2). The main idea of this proof is Theorem A.1. We have the morphism Π −→
Ψ′
ρ is faithfully flat (Proposition B.4) since Rep◦

R (Ψ′
ρ) −→ Rep◦

R (Π) is fully faithful and its image
closed under taking subobject. On the other hand, since 〈V 〉⊗ is the Tannakian category (we
can check that it satisfies the Definition A.9), we have

〈V 〉⊗ ∼= RepR (H),

where H ∈ FGSch/R (see Theorem A.10). According to (1), we have the following composition
map

Rep◦
R (Ψρ) −→ Rep◦

R (Ψ′
ρ) −→〈V 〉s

⊗

is isomorphism. Combine with Rep◦
R (H) = 〈V 〉◦⊗ (the full subcategory of subobjects of finite

direct sums of copies of tensor generated of V ) and Claim 1, we see that the natural map H →Ψ′
ρ

is closed immersion via Theorem A.1-(2). �

Note that, in general, RepR

(
Ψρ

)
is not a full subcategory of RepR (Π). This means that

we have the following interpretation of the diptych (Definition B.2) in terms of representation
categories:

〈V 〉⊗

��

〈V 〉s⊗

��

oo

RepR (Π) Rep◦
R (GL(V )).oo

We now deal with the representation theoretic interpretation of the triptych (Diagram
(35)) of ρ. For that, given an R-linear category C , we define the special fiber Cs at a closed
point s of S := Spec(R) to be the full subcategory whose objects W are annihilated by ms , i.e.
ms .i dW = 0 in HomC (W,W ) = 0, where ms is the maximum ideal of R, which determines s.
One can show that Cs is equivalent to the scalar extension Cks where ks = R/ms is the residue
field of R at s. We then have a commutative diagram of solid arrows between k-linear abelian
categories:
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RepR (Ψ′
ρ)(ks ) RepR (Ψρ)(ks )

Im(ρks )

RepR (Π)(ks ).
��

oo

��

��

__

.(36)

From [Ja87, Part I, 10.1, 162] the categories RepR (−)(ks ) are simply the corresponding rep-
resentations categories of the group schemes obtained by base change R → ks . Since V is a
faithful representation of Ψρ (recall that Ψρ → GL(V) is a closed immersion by construction),
V ⊗ks is a faithful representation ofΨρ⊗ks , so that each object of RepR

(
Ψρ

)
(ks ) is a sub-quotient

of some
⊕

T ai,bi (V⊗ ks). This means that the upper horizontal arrow in Diagram (36) factors
through 〈V⊗ks〉⊗, i.e. the dotted arrow exists and still produces a commutative diagram. We
conclude that Diagram (36) captures the essence of Diagram (35) as the former can easily be
completed by introducing the representation category of the general linear group in the lower
right corner.

Theorem B.9 (Lemma 3.6). Let M be an absolute connection on X /k. Then each locally free
relative connection in 〈inf(M )〉⊗ is indeed a special subobject of a tensor generated object from
inf(M ).

Proof. The R-point η induces an equivalence of abelian tensor categories

η∗ : 〈inf(M )〉⊗ −→ RepR (G ′),(37)

where G ′ is a flat group scheme over R (see Theorem A.10). Let p : G ′ → GL(η∗inf(M )) be the
associated representation of the group G . We consider the diptych (Definition B.2) of p :

Ψ′
ρ

// G� _

��
G ′

p
//

OO

GL(η∗inf(M ))

where G is the group scheme Ψρ of Definition B.2. Theorem A.1 and Proposition B.8-(2) show
that the leftmost arrow above is an isomorphism. Moreover, according to Proposition B.8-(1),
the functor η∗ induces an equivalence

〈inf(M )〉s
⊗

∼−→ Rep◦
R (G).(38)

Thus, the statement of this lemma can be proved if we can show that G isomorphic to G ′.

To prove isomorphic between G and G ′, we only need to treat the local property, that is,
we only need to prove that G ′

ks
is fully faithful over Gks thanks to Proposition B.5. Moreover, we

still prove that the functor

Repk (Gks ) −→〈inf(M )|Xks
〉⊗
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is an equivalence based on the Corollary B.6 (i) and Diagram (36). The proof is a consequence
of the following claims which we use the notion of k instead of ks for convenience.

Claim 1. Let N and N ′ be objects in C (X /k) and let

N |Xk = inf(N )|Xk

θ−→ inf(N ′)|Xk =N ′
Xk

be an arrow of C (Xk /k). Then there exists a morphism of C (X /R)

θ̃ : inf(N ) −→ inf(N ′)

lifting θ.

Verification. We have an arrow of C (Xk /k)

θ : N |Xk
−→N ′∣∣

Xk

which gives us an arrow of C (Xk /k)

σ : OXk −→N
∣∣∨

Xk
⊗N ′

∣∣∣
Xk

=: E |Xk

We will show that σ is the restriction of an arrow OX → E of C (X /R). Now, let

ι : T −→ E |Xk

be the maximal trivial subobject; the arrow σ can therefore be written as a composition in
C (Xk /k)

OXk

τ−→ T
ι−→ E

∣∣∣
Xk

.(39)

According to Lemma 3.3-(1), it is possible to find T ∈C (S/k) and a morphism of C (X /k)

ι̃ : f ∗(T ) −→ E

such that ι is the restriction to Xk of ι̃. As f is proper, flat and geometrically integral, we have
f∗OX =OS [SGA1, X, Proposition 1.2, p.202]; it then follows that the functor f ∗ from vector bun-
dles on S to vector bundles on X is full and faithful. As S is affine, we conclude that the mor-
phism of OXk -modules

f ∗ (OS)
∣∣∣Xk =OXk

τ−→ T = f ∗(T )
∣∣∣ Xk

appearing in (39) is the restriction of a morphism

τ̃= f ∗(δ) : f ∗ (OS) −→ f ∗(T ).

Of course, δ need not be a morphism of C (S/k), but f ∗(δ) is surely a morphism of C (X /R), that
is, an arrow between inflations

Inf(OX ) −→ Inf
(

f ∗T
)

.

In conclusion, we have proved that σ is the restriction of ι̃◦ τ̃.

Claim 2. For each V ∈ 〈inf(M )|Xk 〉⊗, there exist E and E ′ in 〈inf(M )〉s⊗ and an arrow of
C (X /R)

θ̃ : E −→ E ′

such that

V ∼= Coker
(
θ̃|Xk : E |Xk −→ E ′|Xk

)
.
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Verification. According to Lemma 3.3-(2) (applied to the dual of V ), we can find N and
N ′ in 〈inf(M )〉⊗ fitting into an exact sequence of C (X /k)-modules:

N |Xk

θ−→N ′
∣∣∣

xk
−→ V −→ 0.

Using Claim 1, θ is the restriction to Xk of an arrow in C (X /R)

θ̃ : InfX(N ) −→ InfX
(
N ′) .

We then take E = InfX (N ) and E ′ = InfX
(
N ′), and the proof is finished since these do belong to

〈M 〉s⊗.

Claim 3. Denote by η the composition of functors

RepR (G) −→ RepR (G ′) ∼−→〈inf(M )〉⊗.

For each V ∈ Repk (Gk ), there exists N ∈ Rep◦
R (G) such that

(1) V is a quotient of Nk and
(2) there exists some N ∈ 〈inf(M )〉⊗ such that η(N ) = inf(N ).

Verification. According to [Se68, Proposition 3, p.41] we can "almost lift" V. Precisely, there
exists E ∈ Rep◦

R (G) and a surjection Ek →V . By means of the equivalence

η : Rep◦
R(G)

∼−→〈M 〉s
⊗

of (38), we can find a diagram in C (X /R):

F //

��

T

η(E),

where T is some tensor power of Inf(M ), the vertical arrow is an epimorphism (in C (X /R)),
and the horizontal arrow is special. In particular, T = Inf(T ′) for some tensor power T ′ of M .
According to Lemma 3.4, there exists N ∈C (X /k) and an epimorphism

Inf(N ) −→F .

Since Inf(N ) in fact belongs to 〈M 〉s⊗; the above equivalence then produces the desired N , viz.
any object of Rep◦

R (G) which is taken by η to Inf(N ). Indeed, (2) is verified by construction, and
(1) follows from the fact that if η(θ) : η(N ) → η(E) is an epimorphism of C (X /R), then θ is an
epimorphism in RepR (G) (between objects of Rep◦

R (G) ).

Claim 4. The functor

ηk : Repk (Gk ) = RepR (G)(k) −→〈inf(M )〉⊗,(k)

is full.
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Verification. Let ϕ : ηk ( V) → ηk
(
V ′) be a morphism in C (Xk /k) . It then fits into a com-

mutative diagram

η(N )⊗k
θ //

����

η(N ′)⊗k

����
ηk (V )

φ
// ηk (V ′),

where η(N ) = Inf(N ) and η
(
N ′)= Inf

(
N ′) are constructed from Claim 3. Claim 1 gives us a lift

θ̃ : η(N) −→ η
(
N′)

of θ. Since N and N ′ belong to 〈M 〉⊗, both Inf(N ) and Inf
(
N ′) lie in 〈M 〉s⊗. Since η is an

equivalence between Rep◦
R (G) and 〈M 〉s⊗, there exists σ : N → N′ such that η(σ) = θ̃. Since the

vertical arrows in the above diagram also belong to the image of ηk , the proof of the claim is
finished. �
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