HOẠT ĐỘNG TRONG TUẦN

Deligne - Katz correspondence for overconvergent isocrystals
Người báo cáo: Nguyễn Khánh Hưng (Viện Toán học)

Thời gian: 16:30, thứ năm, 09/08/2022

Hình thức: Offline tại phòng 602 và online qua google meet, cụ thể https://meet.google.com/yep-kbzk-eao?pli=1&authuser=1

Tóm tắt: In 1987, Katz established an equivalence between differential modules over the field of formal Laurent series k((t)) and special differential modules over the multiplicative group over k, when k has characteristic 0. This result is a generalization of Deligne's equivalence between subcategories of regular singular differential modules. My talk will cover the p-adic analogue of both equivalences, which is a combination of results of Crew-Christol-Mebkhout-André-Matsuda.




Trở lại

10/12/22, Hội nghị, hội thảo:
Winter School on Mathematical Models and Dynamical Systems
16/12/22, Bài giảng viện:
Arational blowdown surgery on 4-manifolds
19/12/22, Hội nghị, hội thảo:
Một số vấn đề trong hình học và tô pô
08/08/23, Hội nghị, hội thảo:
Đại hội Toán học Việt Nam lần thứ X

Công bố khoa học mới