A robust and efficient combined trust region–line search exact penalty projected structured approach for constrained nonlinear least squares problems
Báo cáo viên: Nezam Mahdavi-Amiri

Thời gian: 9h00, Thứ 4 ngày 18/12/2019
Địa điểm: Phòng 302 Nhà A5, Viện Toán học
Tóm tắt: We describe a combined trust region–line search projected structured algorithm for solving constrained nonlinear least-squares problems. The approach, based on an adaptive projected structured scheme due to Mahdavi-Amiri and Bartels and an exact penalty method due to Coleman and Conn, has been shown to have a local superlinear rate of convergence. For robustness, a new penalty parameter updating strategy and a specific line search technique within the trust region are employed. Technical details of our implementation are discussed and the program is tested on well-known least squares test problems (small and large residuals) as well as some randomly generated test problems due to Bartels and Mahdavi-Amiri. A comparison of our obtained results with the ones obtained by a number of well-known general nonlinear programming methods, while showing outperformance of the algorithm, confirms the practical significance of our adaptive penalty updating scheme, combined trust region–line search strategy, and special structured consideration for the approximate projected least squares Hessians.

Trở lại

09/12/22, Hội nghị, hội thảo:
Winter School on Mathematical Models and Dynamical Systems
16/12/22, Bài giảng viện:
Arational blowdown surgery on 4-manifolds
19/12/22, Hội nghị, hội thảo:
Một số vấn đề trong hình học và tô pô
08/08/23, Hội nghị, hội thảo:
Đại hội Toán học Việt Nam lần thứ X

Công bố khoa học mới