HOẠT ĐỘNG TRONG TUẦN

How convexity links geometry and nonlinear analysis
Người báo cáo: Giáo sư Juergen Jost, MPI for Mathematics in Sciences

Thời gian: 9h30, Thứ 6, ngày 10 tháng 3 năm 2017
Địa điểm: Phòng 301, Nhà A5, Viện Toán học, 18 Hoàng Quốc Việt, Cầu Giấy, Hà Nội
Tóm tắt: A strictly convex function has a unique minimizer. This applies also in infinite dimension, and is a powerful tool for solving variational problems and controlling the properties of their solutions. Geometrically, a compact subset of a hemisphere or a domain in a nonpositively curved simply connected manifold are convex, and optimization problems for maps with values in such spaces lead to strictly convex functionals. Therefore, we can solve them and control their solutions.
In this lecture, I shall show how to convert some geometric problems like the Bernstein problem for minimal graphs or the Margulis superrigidity problem into such variational problems and then solve them.

Trở lại