HOẠT ĐỘNG TRONG TUẦN

Geometry of integrable dynamical systems on 2-dimensional surfaces
Người báo cáo: Nguyen Van Minh (Foreign Trade University, Hanoi)

Thời gian: 9h00, thứ 4 ngày 14/05/2014
Địa điểm: Phòng 6 nhà A14 - Viện Toán học, 18 Hoàng Quốc Việt Cầu Giấy, Hà Nội

Tóm tắt: I will present the problem of classification, up to smooth isomorphisms or up to orbital equivalence, of smooth integrable vector fields on  2-dimensional surfaces,  under some nondegeneracy conditions. We will consider an integrable system of type (1,1) by a couple (X,F) or (X, cF), where X is a vector field on a 2-dimensional surface C such that X  eq 0 almost everywhere, F is a first integral of X (i.e. X(F)=0) such that dF eq 0 almost everywhere, and cF is the ring of all first integrals of X.

Trở lại