Hà Huy Bảng
GS. TSKH. NCVCC
Cộng tác viên
|
Liên hệ
Phòng làm việc: 505, Nhà A6
Điện thoại: +84 24 38361121 /505
Email: hhbang AT math.ac.vn
Lý lịch khoa học
Quá trình đào tạo:
- 1982: Tốt nghiêp Đại học tổng hợp quốc gia Rostov, liên bang Nga
- 1988: Bảo vệ Luận án Tiến sĩ tại Viện Toán học, Viện hàm lâm Khoa học và Công nghệ Việt Nam
- 1995: Bảo vệ Luận án Tiến sĩ Khoa học tại Viện Toán Steklov, Viện Hàn lâm Khoa học Liên bang Nga
- 1996: Phong PGS
- 2003: Phong GS
Các vị trí công tác đã qua: Phó tổng biên tập Acta Vietnamica Mathemaica
DANH SÁCH CÔNG TRÌNH
Danh sách trong Mathscinet
Danh sách gần đây1 | Hà Huy Bảng, Vu Nhat Huy, Bernstein inequality for multivariate functions with smooth fourier images, Ukrainian Mathematical Journal, 74 (2023) 1780-1794, (SCI-E, Scopus). |
2 | Hà Huy Bảng, Vu Nhat Huy, P-Primitives and Explicit Solutions of Polynomial Differential Equations in $L^{\varPhi}(\mathbb {T})$, Vietnam Journal of Mathematics, 51 (2023), 245–261 (2023), (Scopus). |
3 | Hà Huy Bảng, Vu Nhat Huy, Q-primitives and explicit solutions of polynomial differential equations in L^p (T), Memoirs on Differential Equations and Mathematical Physics, 85 (2022), 91-102, (ESCI). |
4 | Hà Huy Bảng, Vu Nhat Huy, Paley-Wiener type theorem for functions with values in Banach spaces, Ukrainian Mathematical Journal, 75 (2022), 743-754, (SCI-E, Scopus. |
5 | Hà Huy Bảng, Vu Nhat Huy, An improvement of Bernstein’s inequality for functions in Orlicz spaces with smooth fourier image, Rocky Mountain Journal of Mathematics, Volume 52 (2022), No. 1, 29–42, (SCI-E, Scopus). |
6 | Hà Huy Bảng, Vu Nhat Huy, A Bernstein inequality for differential and integral operators on Orlicz spaces, Jaen Journal on Approximation, 12 (2021), 69-88, (ESCI). |
7 | Hà Huy Bảng, Vu Nhat Huy, An extension of Bernstein inequality, Journal of Mathematical Analysis and Applications, 503 (2021), 125289, (SCI-E, Scopus). |
8 | Hà Huy Bảng, Vũ Nhật Huy, Some Spectral Formulas for Functions Generated by Differential and Integral Operators, Acta Mathematica Vietnamica volume 46 (2021), 163–177, Scopus. |
9 | Hà Huy Bảng, Vu Nhat Huy, New Paley–Wiener Theorems, Complex Analysis and Operator Theory (2020) 14:47 (SCI(-E), Scopus). |
10 | Hà Huy Bảng, Vu Nhat Huy, A Bernstein - Nikolskii inequality for weighted Lebesgue spaces, Vladikavkaz Mathematical Journal, 22 (2020), 18-29, https://doi.org/10.46698/h8083-6917-3687-w. |
11 | Hà Huy Bảng, Vu Nhat Huy, Kyung Soo Rim, Multivariate Bernstein inequalities for entire functions of exponential type in Lp(Rn), Journal of Inequalities and Applications, 215 (2019), https://doi.org/10.1186/s13660-019-2167-7, (SCI(-E), Scopus). |
12 | Hà Huy Bảng, Vu Nhat Huy, A Bohr-Nikol’skii Inequality for Weighted Lebesgue Spaces, Acta Mathematica Vietnamica, 44 (2019), pp 701–710, Scopus. |
13 | Sa Thi Lan Anh, Phan Thi Ha Trang, Trieu Quynh Trang, Hà Huy Bảng, Unparticle Effects on Axion-Like Particles Production in e^+e^− Collisions, International Journal of Theoretical Physics, 57 (2018), pp 2015–2021.SCI(-E); Scopus. |
14 | Hà Huy Bảng, Vu Nhat Huy, Local Spectral Formula for Integral Operators on \(L_{p}({\mathbb T})\), Vietnam Journal of Mathematics, 45 (2017), 737–746, Scopus. |
15 | Hà Huy Bảng, On a theorem of F. Riesz, Acta Mathematica Hungarica, 148 (2016), 360–369, SCI(-E); Scopus. |
16 | Hà Huy Bảng, Vu Nhat Huy, Paley-Wiener theorem for functions in L_p(R^n). Integral Transforms and Special Functions 27 (2016), 715–730, SCI(-E); Scopus. |
17 | Hà Huy Bảng, Vu Nhat Huy, A Study of the Sequence of Norm of Derivatives (or Primitives) of Functions Depending on Their Beurling Spectrum, Vietnam Journal of Mathematics, 44 (2016), 419–429,Scopus. |
18 | Hà Huy Bảng, Vu Nhat Huy, A Bohr-Nikolskii inequality, Integral transforms and special functions, 27 (2016), 55 – 63, SCI(-E); Scopus. |
19 | Hà Huy Bảng, Vu Nhat Huy, A Study of Behavior of the Sequence of Norm of Primitives of Functions in Orlicz Spaces Depending on Their Spectrum, Tokyo Journal of Mathematics, 38 (2015), 283-308, SCI(-E), Scopus. |
20 | Hà Huy Bảng, Vu Nhat Huy, Some Extensions of the Kolmogorov–Stein Inequality, Vietnam Journal of Mathematics, 43 (2015), 173 -179,Scopus. |
21 | Hà Huy Bảng, Vu Nhat Huy, The Paley–Wiener Theorem in the Language of Taylor Expansion Coefficients, Doklady Mathematics, Vol. 86 (2012), 677 -- 680, SCI(-E); Scopus. |
22 | Hà Huy Bảng, V. N. Huy, Studying behavior for sequence of norms of primitives of functions depending on their spectrum (in Russian), Daklady Mathematics 440 (2011), 456 -- 458. |
23 | Hà Huy Bảng, V. N. Huy, Behavior of the sequence of norms of primitives of a function in Orlicz spaces, East Journal on Approximations 17 (2011), 127 -- 136. |
24 | Hà Huy Bảng, V. N. Huy, New results concerning the Bernstein-Nikol'skii inequality, In: Advances in Math. Research 16 (2011), 177 -- 191. |
25 | Hà Huy Bảng, and V. N. Huy, Some properties of Orlicz-Lorentz spaces, Acta Mathematica Vietnamica 36 (2011), 145 -- 167, Scopus. |
26 | Hà Huy Bảng, and V. N. Huy, Best constants for the inequalities between equiavalent norms in Orlicz spaces, Bulletin of the Polish Academy of Sciences, Mathematics 59 (2011), 165 -- 174. |
27 | Hà Huy Bảng, B. V. Huong, Behavior of the sequence of norms of primitives of a function in Lorentz spaces, Vietnam Journal of Mathematics 38 (2010), 425 -- 433, Scopus. |
28 | Hà Huy Bảng, V. N. Huy, Behavior of the sequence of norms of primitives of a function, J. Approx. Theory, 162 (2010), 1178- 1186. |
29 | Hà Huy Bảng, Mai Thi Thu, A Gagliardo-Nirenberg inequality for Orlicz and Lorentz spaces on $\Bbb R^n_+$, Vietnam J. Math. 35 (2007), 415 - 427. |
30 | Hà Huy Bảng, N. M. Cong, Bernstein-Nikolskii type inequality in Lorentz spaces and related topics. Vladikavkazskii Mat. J. 7 (2005), 17 - 27. |
31 | Hà Huy Bảng, N. M. Cong, Generalizations of the Riesz convergence theorem for Lorentz spaces. Acta Math. Hungar. 106 (2005), 331 - 341. |
32 | Hà Huy Bảng, Mai Thi Thu, A Gagliardo-Nirenberg inequality for Orlicz spaces, East J. Approx. 10 (2004), N03, 371 - 377. |
33 | Hà Huy Bảng, Mai Thi Thu, A property of entire functions of exponential type for Lorentz spaces, Vietnam. J. Math. 32 (2004), 219 - 225. |
34 | Hà Huy Bảng, Mai Thi Thu, A Landau-Kolmogorov inequality for Lorentz spaces, Tokyo J. Math. 27 (2004), N01, 13 - 19. |
35 | Hà Huy Bảng, Theory of Orlicz spaces (in Vietnamese) - Lý thuyết không gian Orlicz, NXB Đại học Quốc gia Hà Nội, 2003, 385 trang. |
36 | Hà Huy Bảng, Mai Thi Thu, A Landau-Kolmogorov inequality for Orlicz spaces, J. Inequal. Appl. 7 (2002), 663 - 672. |
37 | Hà Huy Bảng, H. M. Giao, On the Kolmogorov Inequality for M Φ -Norm, Appl. Anal. 81 (2002), 1 - 11. |
38 | Hà Huy Bảng, An inequality of Bohr and Favard for Orlicz spaces. Bull. Polish Acad. Sci. Math. 49 (2001), 381 - 387. |
39 | Hà Huy Bảng, The Riesz theorem for the spaces $N_{\phi}$ and its applications. Dokl. Akad. Nauk 377 (2001), 746 - 748 (in Russian). |
40 | Hà Huy Bảng, Investigation of the properties of functions in the space N_{\phi}-depending on the geometry of their spectrum. (Russian) Dokl. Akad. Nauk 374 (2000), 590 - 593. |
41 | Hà Huy Bảng, Absolutely representing systems of exponents in a class of analytic functions. In: Recent Problems in Mathematical Analysis, Gingo, Rostov-on-Don, 2000, 146 - 155. |
42 | Hà Huy Bảng, Truong Van Thuong, Density of a collection of functions in N_{\phi}-spaces. J. Math. Sci. Univ. Tokyo 7 (2000), 311 - 324. |
43 | Hà Huy Bảng, On an inequality of Bohr and Favard. East J. Approximations. 6 (2000), 385 - 395. |
44 | Hà Huy Bảng, H. M. Le, An inequality of Kolmogorov and Stein, Bull. Austral. Math. Soc. 61 (2000), 153 - 159. |
45 | Hà Huy Bảng, Nonconvex caces of the Paley-Wiener-Schwartz theorem. In: Proceedings of the 5th Conference for Vietnamese Mathematicians, Science and Technics Publishers, Hanoi 1999, 15 - 30. |
46 | Hà Huy Bảng, Hoang Mai Le, On the Kolmogorov-Stein inequality. J. Inequal. Appl. 3 (1999), 153 - 160. |
47 | Hà Huy Bảng, Hoang Mai Le, Note on the Kolmogorov-Stein inequality, Vietnam. J. Math. 26 (1998), 363 - 366. |
48 | Hà Huy Bảng, The Paley-Wiener-Schwartz theorems for nonconvex domains. In: Proceedings of the Conference "Functional Analysis and Global Analysis'', Springer, 1997, 14 - 30. |
49 | Hà Huy Bảng, Spectrum of functions in Orlicz spaces. J. Math. Sci. Univ. Tokyo 4 (1997), 341 - 349. |
50 | Hà Huy Bảng, Separability of Sobolev-Orlicz spaces of infinite order. Mat. Zametki 61 (1997), 141 - 143. English transl.: Math. Notes 61 (1997), 118 - 120. |
51 | Hà Huy Bảng, Properties of functions in Orlicz spaces in the connection with geometry of their spectrum. Russian Izvestija Akad. Nauk, 61 (1997), 133 - 168. English transl.: Izvestiya: Mathematics 61 (1997), 399 - 434. |
52 | Hà Huy Bảng, A study of the properties of functions depending on the geometry of their spectrum. Russian Doklady Akad. Nauk 355 (1997), 740 - 743. English transl.: Doklady Mathematics 56 (1997), 610 - 613. |
53 | Hà Huy Bảng, Embedding theorems for the Sobolev-Orlicz spaces of infinite order. Russian Doklady Akad. Nauk 354 (1997), 316 - 319. English transl.: Doklady Mathematics 55 (1997), 77 - 380. |
54 | Hà Huy Bảng, Nonconvex cases of the Paley-Wiener-Schwartz theorems. Russian Doklady Akad. Nauk 354 (1997), 165 - 168. English transl.: Doklady Mathematics 55 (1997), 353 - 355. |
55 | Hà Huy Bảng, The existence of a point spectral radius of pseudodifferential operators. Russian Doklady Akad. Nauk 348 (1996), N06, 740 - 742. English transl.: Doklady Mathematics 53 (1996), 420 - 422. |
56 | Hà Huy Bảng, A remark on the Kolmogorov-Stein inequality. J. Math. Analysis Appl. 203 (1996), 861 - 867. |
57 | Hà Huy Bảng, Theorems of the Paley-Wiener-Schwartz type. Trudy Mat. Inst. Steklov 214 (1996), 298 - 319. English transl.: Proc. Steklov Inst. Math. 214 (1996), 291 - 311. |
58 | Hà Huy Bảng, A remark on differential operators of infinite order. Acta Math. Vietnam. 21 (1996), 289 - 294. |
59 | Hà Huy Bảng, Change of variables in Sobolev-Orlicz spaces of infinite order. Mat. Zametki 57 (1995), N03, 331 - 337. English transl.: Math. Notes 57 (1995), N03, 235 - 239. |
60 | Hà Huy Bảng, Asymptotic behavior of the sequence of norms of derivatives. J. Math. Sci. Univ. Tokyo 2 (1995), 611 - 620. |
61 | Hà Huy Bảng, An algebra of pseudodifferential operators. Mat. Sbornik 186(1995), N07, 3 - 14, English transl.: Sbornik: Mathematics 186 (1995), 929 - 940. |
62 | Hà Huy Bảng, A property of entire functions of exponential type. Analysis 15 (1995), 17 - 23. |
63 | Hà Huy Bảng, On the Bernstein - Nikolsky inequality II. Tokyo J. Math. 18 (1995), 123 - 131. |
64 | Hà Huy Bảng, Functions with bounded spectrum. Trans. Amer. Math. Soc. 347 (1995), 1067 - 1080. |
65 | Hà Huy Bảng, Inequalities of the Bernstein - Nikolsky type and their applications. Dr. Sc. Thesis, Steklov Inst. Math., Moscow, 1994, 269 p. (in Russian). |
66 | Hà Huy Bảng, A remark on the Bernstein - Nikolsky inequality. Acta Math. Vietnam. 19 (1994), 71 - 78. |
67 | Hà Huy Bảng, M. Morimoto, The sequence of Luxemburg norms of derivatives. Tokyo J. Math. 17 (1994), 141 - 147. |
68 | Hà Huy Bảng, Remarks on a property of infinitely differentiable functions. Bull. Polish Akad. Sci. 40 (1993), 197 - 206. |
69 | Tran Duc Van, Hà Huy Bảng, R., Gorenflo, On Sobolev - Orlicz spaces of infinite order for a full Euclidean space. Analysis 11 (1991), 67 - 81. |
70 | Hà Huy Bảng, Mitsuo MORIMOTO, On the Bernstein - Nikolsky inequality. Tokyo J. Math. 14 (1991), 231 - 238. |
71 | Hà Huy Bảng, Nontriviality of Sobolev spaces of infinite order for a full Euclidean space. Sibirskii Mat. J. 31 (1990), 208 - 213. English transl.: Siberian Math. J. 31 (1990), 176 - 180 (in Russian). |
72 | Hà Huy Bảng, A property of infinitely differentiable functions. Proc. Amer. Math. Soc. 108 (1990), 73 - 76. |
73 | Tran Duc Van, Hà Huy Bảng, On the solvability of nonlinear differential equations of infinite order in unbounded domains. Dokl. Akad. Nauk USSR 305 (1989), 48 - 51. English transl.: Soviet Math. Dokl. 39 (1989), 268 - 271. |
74 | Hà Huy Bảng, Imbedding theorems for Sobolev spaces of infinite order. Acta Math. Vietnam. 14 (1989),17 - 29. |
75 | Hà Huy Bảng, On imbedding theorems for Sobolev spaces of infinite order. Mat. sbornik 178 (1988), 115 - 127. English transl.: Math. USSR Sbornik 64 (1989), 115 - 127. |
76 | Hà Huy Bảng, Certain imbedding theorems for the spaces of infinite order of periodic functions. Mat. Zametki 43 (4)(1988), 509 - 517. English transl.: Math. Notes 43 (1988), 293 - 298. |
77 | Hà Huy Bảng, Some problems of the theory of functional spaces of infinite order. Ph. D. Thesis, Hanoi Inst. Math., 1987, 115 p. (in Vietnamese). |
78 | Hà Huy Bảng, Ju. F. Korobeinik, On a generalization of the Polya theorem. Mat. Anal. i Prilozen, 19, Izdat. Rostov-on-Don, 1987, 37 - 46 (in Russian). |
79 | Hà Huy Bảng, On the applicability for differential operators of infinite order, Acta Math. Vietnam. 12 (1987), 67 - 73 (in Russian). |
80 | Hà Huy Bảng, Absolutely convergent sums of polynomials of exponents. Acta Math. Vietnam. 11 (1986), 253 - 267 (in Russian). |
81 | Hà Huy Bảng, On nontriviality of Sobolev-Orlicz classes and spaces of infinite order on the line. Mat. Zametki 39 (1986), 453 - 459 (in Russian). |
82 | Hà Huy Bảng, On nontriviality of the weighted Sobolev-Orlicz classes and spaces of infinite order on the line. In: Proceedings of 3th VMC, Hanoi, 2 (1985), 315 - 319 (in Vietnamese). |
83 | Hà Huy Bảng, Ju. F. Korobeinik, The applicability of composite differential operators of infinite order to certain classes of exponential functions. Izvestija Vuzov, Ser. Mat. 7 (1982), 83 - 85 (in Russian). |
84 | Hà Huy Bảng, Applicability of infinite-order composite differential operators with constant coefficients. Izvestija Severo - Kavkaz Nauchn Tsentra Vysshei Shkoly, Ser. Mat. 2 (1982), 20 - 23 (in Russian). |
1 | IMH20191105, Hà Huy Bảng, Vu Nhat Huy, Bohr inequality and Paley-Wiener type theorem value in Banach spaces |
Tin tức nổi bật
20/12/24, Bài giảng viện: New matrix perturbation bounds via “skewness”: theory and applications. |
06/01/25, Hội nghị, hội thảo: The 3rd Vietnam - Korea joint workshop on selected topics in mathematics |
06/01/25, Hội nghị, hội thảo: Geometry and Dynamics in Low Dimensions |