Hà Huy Bảng


GS. TSKH. NCVCC

Cộng tác viên
Hướng nghiên cứu: Giải tích Fourier, Bất đẳng thức, không gian hàm


Liên hệ
Phòng làm việc: 505, Nhà A6
Điện thoại: +84 24 38361121 /505
Email: hhbang AT math.ac.vn

Lý lịch khoa học
Quá trình đào tạo:

  • 1982: Tốt nghiêp Đại học tổng hợp quốc gia Rostov, liên bang Nga
  • 1988: Bảo vệ Luận án Tiến sĩ tại Viện Toán học, Viện hàm lâm Khoa học và Công nghệ Việt Nam
  • 1995: Bảo vệ Luận án Tiến sĩ Khoa học tại Viện Toán Steklov, Viện Hàn lâm Khoa học Liên bang Nga
  • 1996: Phong PGS
  • 2003: Phong GS


Các vị trí công tác đã qua: Phó tổng biên tập Acta Vietnamica Mathemaica

DANH SÁCH CÔNG TRÌNH

Danh sách trong Mathscinet

Danh sách gần đây
1Hà Huy Bảng, Vu Nhat Huy, Kyung Soo Rim, Multivariate Bernstein inequalities for entire functions of exponential type in Lp(Rn), Journal of Inequalities and Applications, 215 (2019), https://doi.org/10.1186/s13660-019-2167-7, (SCI(-E), Scopus).
2Hà Huy Bảng, Vu Nhat Huy, A Bohr-Nikol’skii Inequality for Weighted Lebesgue Spaces, Acta Mathematica Vietnamica, 44 (2019), pp 701–710, Scopus.
3Sa Thi Lan Anh, Phan Thi Ha Trang, Trieu Quynh Trang, Hà Huy Bảng, Unparticle Effects on Axion-Like Particles Production in e^+e^− Collisions, International Journal of Theoretical Physics, 57 (2018), pp 2015–2021.SCI(-E); Scopus.
4Hà Huy Bảng, Vu Nhat Huy, Local Spectral Formula for Integral Operators on \(L_{p}({\mathbb T})\), Vietnam Journal of Mathematics, 45 (2017), 737–746, Scopus.
5Hà Huy Bảng, On a theorem of F. Riesz, Acta Mathematica Hungarica, 148 (2016), 360–369, SCI(-E); Scopus.
6Hà Huy Bảng, Vu Nhat Huy, Paley-Wiener theorem for functions in L_p(R^n). Integral Transforms and Special Functions 27 (2016), 715–730, SCI(-E); Scopus.
7Hà Huy Bảng, Vu Nhat Huy, A Study of the Sequence of Norm of Derivatives (or Primitives) of Functions Depending on Their Beurling Spectrum, Vietnam Journal of Mathematics, 44 (2016), 419–429,Scopus.
8Hà Huy Bảng, Vu Nhat Huy, A Bohr-Nikolskii inequality, Integral transforms and special functions, 27 (2016), 55 – 63, SCI(-E); Scopus.
9Hà Huy Bảng, Vu Nhat Huy, A Study of Behavior of the Sequence of Norm of Primitives of Functions in Orlicz Spaces Depending on Their Spectrum, Tokyo Journal of Mathematics, 38 (2015), 283-308, SCI(-E), Scopus.
10Hà Huy Bảng, Vu Nhat Huy, Some Extensions of the Kolmogorov–Stein Inequality, Vietnam Journal of Mathematics, 43 (2015), 173 -179,Scopus.
11Hà Huy Bảng, Vu Nhat Huy, The Paley–Wiener Theorem in the Language of Taylor Expansion Coefficients,  Doklady Mathematics, Vol. 86 (2012), 677 -- 680, SCI(-E); Scopus.
12Hà Huy Bảng, V. N. Huy, Studying behavior for sequence of norms of primitives of functions depending on their spectrum (in Russian),  Daklady Mathematics  440 (2011), 456 -- 458.
13Hà Huy Bảng, V. N. Huy, Behavior of the sequence of norms of primitives of a function in Orlicz spaces,  East Journal on Approximations  17 (2011), 127 -- 136.
14Hà Huy Bảng, V. N. Huy, New results concerning the Bernstein-Nikol'skii inequality, In:  Advances in Math. Research 16 (2011), 177 -- 191.
15Hà Huy Bảng, Nguyễn Văn Hoàng, and V. N. Huy, Some properties of Orlicz-Lorentz spaces, Acta Mathematica Vietnamica 36 (2011), 145 -- 167, Scopus.
16Hà Huy Bảng, Nguyễn Văn Hoàng, and V. N. Huy, Best constants for the inequalities between equiavalent norms in Orlicz spaces,  Bulletin of the Polish Academy of Sciences, Mathematics  59 (2011), 165 -- 174.
17Hà Huy Bảng, B. V. Huong, Behavior of the sequence of norms of primitives of a function in Lorentz spaces, Vietnam Journal of Mathematics 38 (2010), 425 -- 433, Scopus.
18Hà Huy Bảng, V. N. Huy, Behavior of the sequence of norms of primitives of a function,  J. Approx. Theory, 162 (2010), 1178- 1186.
19Hà Huy Bảng, Mai Thi Thu, A Gagliardo-Nirenberg inequality for Orlicz and Lorentz spaces on $\Bbb R^n_+$, Vietnam J. Math. 35 (2007),  415 - 427.
20Hà Huy Bảng, N. M. Cong, Bernstein-Nikolskii type inequality in Lorentz spaces and related topics. Vladikavkazskii Mat. J. 7 (2005), 17 - 27.
21Hà Huy Bảng, N. M. Cong, Generalizations of the Riesz convergence theorem for Lorentz spaces. Acta Math. Hungar. 106 (2005), 331 - 341.
22Hà Huy Bảng, Mai Thi Thu, A Gagliardo-Nirenberg inequality for Orlicz spaces, East J. Approx. 10 (2004), N03, 371 - 377.
23Hà Huy Bảng, Mai Thi Thu, A property of entire functions of exponential type for Lorentz spaces, Vietnam. J. Math. 32 (2004), 219 - 225.
24Hà Huy Bảng, Mai Thi Thu, A Landau-Kolmogorov inequality for Lorentz spaces, Tokyo J. Math. 27 (2004), N01, 13 - 19.
25Hà Huy Bảng, Theory of Orlicz spaces (in Vietnamese) - Lý thuyết không gian Orlicz, NXB Đại học Quốc gia Hà Nội, 2003, 385 trang.
26Hà Huy Bảng, Mai Thi Thu, A Landau-Kolmogorov inequality for Orlicz spaces, J. Inequal. Appl. 7 (2002), 663 - 672.
27Hà Huy Bảng, H. M. Giao, On the Kolmogorov Inequality for M Φ -Norm, Appl. Anal. 81 (2002), 1 - 11.
28Hà Huy Bảng, An inequality of Bohr and Favard for Orlicz spaces. Bull. Polish Acad. Sci. Math. 49 (2001), 381 - 387.
29Hà Huy Bảng, The Riesz theorem for the spaces $N_{\phi}$  and its applications. Dokl. Akad. Nauk 377 (2001), 746 - 748 (in Russian).
30Hà Huy Bảng, Investigation of the properties of functions in the space N_{\phi}-depending on the geometry of their spectrum. (Russian) Dokl. Akad. Nauk 374 (2000), 590 - 593.
31Hà Huy Bảng, Absolutely representing systems of exponents in a class of analytic functions. In: Recent Problems in Mathematical Analysis, Gingo, Rostov-on-Don, 2000, 146 - 155.
32Hà Huy Bảng, Truong Van Thuong, Density of a collection of functions in N_{\phi}-spaces. J. Math. Sci. Univ. Tokyo 7 (2000), 311 - 324.
33Hà Huy Bảng, On an inequality of Bohr and Favard. East J. Approximations. 6 (2000), 385 - 395.
34Hà Huy Bảng, H. M. Le, An inequality of Kolmogorov and Stein, Bull. Austral. Math. Soc. 61 (2000), 153 - 159.
35Hà Huy Bảng, Nonconvex caces of the Paley-Wiener-Schwartz theorem. In: Proceedings of the 5th Conference for Vietnamese Mathematicians, Science and Technics Publishers, Hanoi 1999, 15 - 30.
36Hà Huy Bảng, Hoang Mai Le, On the Kolmogorov-Stein inequality. J. Inequal. Appl. 3 (1999), 153 - 160.
37Hà Huy Bảng, Hoang Mai Le, Note on the Kolmogorov-Stein inequalityVietnam. J. Math. 26 (1998), 363 - 366.
38Hà Huy Bảng, The Paley-Wiener-Schwartz theorems for nonconvex domains. In: Proceedings of the Conference "Functional Analysis and Global Analysis'', Springer, 1997, 14 - 30.
39Hà Huy Bảng, Spectrum of functions in Orlicz spaces. J. Math. Sci. Univ. Tokyo 4 (1997), 341 - 349.
40Hà Huy Bảng, Separability of Sobolev-Orlicz spaces of infinite order. Mat. Zametki 61 (1997), 141 - 143. English transl.: Math. Notes 61 (1997), 118 - 120.
41Hà Huy Bảng, Properties of functions in Orlicz spaces in the connection with geometry of their spectrum. Russian Izvestija Akad. Nauk, 61 (1997), 133 - 168. English transl.: Izvestiya: Mathematics 61 (1997), 399 - 434.
42Hà Huy Bảng, A study of the properties of functions depending on the geometry of their spectrum. Russian Doklady Akad. Nauk 355 (1997), 740 - 743. English transl.: Doklady Mathematics 56 (1997), 610 - 613.
43Hà Huy Bảng, Embedding theorems for the Sobolev-Orlicz spaces of infinite order. Russian Doklady Akad. Nauk 354 (1997), 316 - 319. English transl.: Doklady Mathematics 55 (1997), 77 - 380.
44Hà Huy Bảng, Nonconvex cases of the Paley-Wiener-Schwartz theorems. Russian Doklady Akad. Nauk 354 (1997), 165 - 168. English transl.: Doklady Mathematics 55 (1997), 353 - 355.
45Hà Huy Bảng, The existence of a point spectral radius of pseudodifferential operators. Russian Doklady Akad. Nauk 348 (1996), N06, 740 - 742. English transl.: Doklady Mathematics 53 (1996), 420 - 422.
46Hà Huy Bảng, A remark on the Kolmogorov-Stein inequality. J. Math. Analysis Appl. 203 (1996), 861 - 867.
47Hà Huy Bảng, Theorems of the Paley-Wiener-Schwartz type. Trudy Mat. Inst. Steklov 214 (1996), 298 - 319. English transl.: Proc. Steklov Inst. Math. 214 (1996), 291 - 311.
48Hà Huy Bảng, A remark on differential operators of infinite order. Acta Math. Vietnam. 21 (1996), 289 - 294.
49Hà Huy Bảng, Change of variables in Sobolev-Orlicz spaces of infinite order. Mat. Zametki 57 (1995), N03, 331 - 337. English transl.: Math. Notes 57 (1995), N03, 235 - 239.
50Hà Huy Bảng, Asymptotic behavior of the sequence of norms of derivatives. J. Math. Sci. Univ. Tokyo 2 (1995), 611 - 620.
51Hà Huy Bảng, An algebra of pseudodifferential operators. Mat. Sbornik 186(1995), N07, 3 - 14, English transl.: Sbornik: Mathematics 186 (1995), 929 - 940.
52Hà Huy Bảng, A property of entire functions of exponential type. Analysis 15 (1995), 17 - 23.
53Hà Huy Bảng, On the Bernstein - Nikolsky inequality II. Tokyo J. Math. 18 (1995), 123 - 131.
54Hà Huy Bảng, Functions with bounded spectrum. Trans. Amer. Math. Soc. 347 (1995), 1067 - 1080.
55Hà Huy Bảng, Inequalities of the Bernstein - Nikolsky type and their applications. Dr. Sc. Thesis, Steklov Inst. Math., Moscow, 1994, 269 p. (in Russian).
56Hà Huy Bảng, A remark on the Bernstein - Nikolsky inequality. Acta Math. Vietnam. 19 (1994), 71 - 78.
57Hà Huy Bảng, M. Morimoto, The sequence of Luxemburg norms of derivatives. Tokyo J. Math. 17 (1994), 141 - 147.
58Hà Huy Bảng, Remarks on a property of infinitely differentiable functions. Bull. Polish Akad. Sci. 40 (1993), 197 - 206.
59Tran Duc Van, Hà Huy Bảng, R., Gorenflo, On Sobolev - Orlicz spaces of infinite order for a full Euclidean space. Analysis 11 (1991), 67 - 81.
60Hà Huy Bảng, Mitsuo MORIMOTO, On the Bernstein - Nikolsky inequality. Tokyo J. Math. 14 (1991), 231 - 238.
61Hà Huy Bảng, Nontriviality of Sobolev spaces of infinite order for a full Euclidean space. Sibirskii Mat. J. 31 (1990), 208 - 213. English transl.: Siberian Math. J. 31 (1990), 176 - 180 (in Russian).
62Hà Huy Bảng, A property of infinitely differentiable functions. Proc. Amer. Math. Soc. 108 (1990), 73 - 76.
63Tran Duc Van, Hà Huy Bảng, On the solvability of nonlinear differential equations of infinite order in unbounded domains. Dokl. Akad. Nauk USSR 305 (1989), 48 - 51. English transl.: Soviet Math. Dokl. 39 (1989), 268 - 271.
64Hà Huy Bảng, Imbedding theorems for Sobolev spaces of infinite order. Acta Math. Vietnam. 14 (1989),17 - 29.
65Hà Huy Bảng, On imbedding theorems for Sobolev spaces of infinite order. Mat. sbornik 178 (1988), 115 - 127. English transl.: Math. USSR Sbornik 64 (1989), 115 - 127.
66Hà Huy Bảng, Certain imbedding theorems for the spaces of infinite order of periodic functions. Mat. Zametki 43 (4)(1988), 509 - 517. English transl.: Math. Notes 43 (1988), 293 - 298.
67Hà Huy Bảng, Some problems of the theory of functional spaces of infinite order. Ph. D. Thesis, Hanoi Inst. Math., 1987, 115 p. (in Vietnamese).
68Hà Huy Bảng, Ju. F. Korobeinik, On a generalization of the Polya theorem. Mat. Anal. i Prilozen, 19, Izdat. Rostov-on-Don, 1987, 37 - 46 (in Russian).
69Hà Huy Bảng, On the applicability for differential operators of infinite order, Acta Math. Vietnam. 12 (1987), 67 - 73 (in Russian).
70Hà Huy Bảng, Absolutely convergent sums of polynomials of exponents. Acta Math. Vietnam. 11 (1986),  253 - 267 (in Russian).
71Hà Huy Bảng, On nontriviality of Sobolev-Orlicz classes and spaces of infinite order on the line. Mat. Zametki 39 (1986), 453 - 459 (in Russian).
72Hà Huy Bảng, On nontriviality of the weighted Sobolev-Orlicz classes and spaces of infinite order on the line. In: Proceedings of 3th VMC, Hanoi, 2 (1985), 315 - 319 (in Vietnamese).
73Hà Huy Bảng, Ju. F. Korobeinik, The applicability of composite differential operators of infinite order to certain classes of exponential functions. Izvestija Vuzov, Ser. Mat. 7 (1982), 83 - 85 (in Russian).
74Hà Huy Bảng, Applicability of infinite-order composite differential operators with constant coefficients. Izvestija Severo - Kavkaz Nauchn Tsentra Vysshei Shkoly, Ser. Mat. 2 (1982), 20 - 23 (in Russian).
Tiền ấn phẩm
1IMH20191105, Hà Huy Bảng, Vu Nhat Huy, Bohr inequality and Paley-Wiener type theorem value in Banach spaces