Hoàng Thế Tuấn


TS. NCV

Phòng Xác suất và thống kê
Hướng nghiên cứu: Xác suất thống kê


Liên hệ
Phòng làm việc: 107, Nhà A5
Điện thoại: +84 (02)4 37563474 /107
Email: httuan AT math.ac.vn

DANH SÁCH CÔNG TRÌNH

Danh sách trong Mathscinet

Danh sách gần đây
1Hoàng Thế Tuấn, Hieu Trinh, Stability of fractional-order nonlinear systems by Lyapunov direct method. IET Control Theory and Applications, 12 (2018), pp. 2417-2422, SCI(-E); Scopus.
2Đoàn Thái Sơn, P.T. Huong, P.E. Kloeden, Hoàng Thế Tuấn, Asymptotic separation between solutions of Caputo fractional stochastic differential equations. Stochastic Analysis and Applications, 36 (2018), issue 4, 654-664 (SCI(-E); Scopus).
3Hoàng Thế Tuấn, Hieu Trinh, A linearized stability theorem for nonlinear delay fractional differential equations. IEEE Transactions on Automatic Control, 63(2018), 3180 - 3186, SCI(-E); Scopus.
4Nguyễn Đình Công, Đoàn Thái Sơn, Hoàng Thế Tuấn, Asymptotic stability of linear fractional systems with constant coefficients and small time dependent perturbations. Vietnam Journal of Mathematics. 46(2018), pp 665–680, Scopus.
5Nguyễn Đình Công, Hoàng Thế Tuấn, Generation of nonlocal fractional dynamical systems by fractional differential equations. Journal of Integral Equations and Applications, 29 (2017), 1-24, SCI(-E); Scopus.
6Kai Diethelm, Stefan Siegmund, Hoàng Thế Tuấn, Asymptotic behavior of solutions of linear multi-order fractional differential equation systems. Fractional Calculus and Applied Analysis, 20 (2017), 1165–1195, SCI(-E); Scopus.
7Nguyễn Đình Công, Hoàng Thế Tuấn, Existence, uniqueness and exponential boundedness of global solutions to delay fractional differential equations, Mediterranean Journal of Mathematics, 14 (2017), SCI(-E); Scopus.
8Nguyễn Đình Công, Đoàn Thái Sơn, Hoàng Thế Tuấn, A Perron-type theorem for fractional differential systems. Electronic Journal of Differential Equations, 2017 (2017), No. 142, 1-12, SCI(-E); Scopus.
9Nguyễn Đình Công, Đoàn Thái Sơn, Stefan Siegmund, Hoàng Thế Tuấn, An instability theorem for nonlinear fractional differential systems. Discrete and Continuous Dynamical Systems - Series B, 22 ( 2017), 3079 - 3090, SCI(-E); Scopus.
10Nguyễn Đình Công, Đoàn Thái Sơn, S. Siegmund, Hoàng Thế Tuấn, On stable manifolds for fractional differential equations in high-dimensional spaces, Nonlinear Dynamics, 86 (2016), 1885–1894, SCI(-E); Scopus.
11Nguyễn Đình Công, Đoàn Thái Sơn, Siegmund Stefan, Hoàng Thế Tuấn, Linearized asymptotic stability for fractional differential equations, Electronic Journal of Qualitative Theory of Differential Equations, 39 (2016), 1-13, SCI(-E); Scopus.
12Nguyễn Đình Công, Đoàn Thái Sơn, Hoàng Thế Tuấn, Stefan Siegmund, Structure of the Fractional Lyapunov Spectrum for Linear Fractional Differential Equations, Advances in Dynamical Systems and Applications, 9 (2014), 149-159, SCI(-E), Scopus.
13Nguyễn Đình Công, Đoàn Thái Sơn, Hoàng Thế Tuấn, On fractional lyapunov exponent for solutions of linear fractional differential equations, Fractional Calculus and Applied Analysis, 17 (2014), 285-306, SCI(-E); Scopus.
14Nguyễn Đình Công, Đoàn Thái Sơn, Stefan Siegmund, Hoàng Thế Tuấn, On stable manifolds for planar fractional differential equations, Applied Mathematics and Computation, 226 (2014), 1, 157-168, SCI(-E); Scopus.
15Hoàng Thế Tuấn, Hai Dang and Vu Van Khu, Dynamics of a Stochastic predator-prey model with Beddington-DeAngelis functional response,  SCIENTIA. Series A: Mathematical Sciences, ISSN: 0716-8446, 22, 75 -- 84.
Tiền ấn phẩm
1IMH20181001, Nguyễn Đình Công, Hoàng Thế Tuấn, Hieu Trinh, On asymptotic properties of solutions to fractional differential equations
2IMH20180802, Hoàng Thế Tuấn, S. Siegmund, Stability of scalar nonlinear fractional differential equations with linearly dominated delay.
3IMH20171203, Hoàng Thế Tuấn, Adam Czornik, J. Nieto, M. Niezabitowski, Global attractivity for some classes of Riemann–Liouville fractional differential systems. Accepted to Journal of Integral Equations and Applications arXiv:1709.00210