Ngô Đắc Tân


GS. TS. NCVCC

Phòng Cơ sở toán học của tin học
Hướng nghiên cứu: Đồ thị bắc cầu đỉnh, cấu trúc của đồ thị, đồ thị có hướng


Liên hệ
Phòng làm việc: 511, Nhà A6
Điện thoại: +84 (0)24 38361121/511
Email: ndtan AT math.ac.vn

Lý lịch khoa học

Nơi sinh: Bắc Ninh

  • 1975: Đại học, Đại học Quốc gia Belarus, Minsk, Belarus
  • 1986:Tiến sĩ, Đại học Quốc gia Belarus, Minsk, Belarus
  • 2002: Phó giáo sư
  • 2006: Giáo sư

Chuyên ngành: Lý thuyết đồ thị

Các vị trí công tác đã qua

  • 1996 – 2002: Trưởng phòng
  • 2007 - 2012: Phó Viện trưởng

Các lĩnh vực quan tâm: Toán học rời rạc
DANH SÁCH CÔNG TRÌNH

Danh sách trong Mathscinet

Danh sách gần đây
1Ngô Đắc Tân, Tournaments and bipartite tournaments without vertex disjoint cycles of different lengths, SIAM Journal on Discrete Mathematics, 35 (1) (2021), 485 - 494, (SCI-E, Scopus).
2Ngô Đắc Tân, On 3-regular digraphs of girth 4, Discrete Mathematics, 343 (2020), Article 111632,SCI(-E), Scopus.
3Ngô Đắc Tân, On 3-regular digraphs without vertex disjoint cycles of different lengths, Discrete Mathematics 340 (2017) 1933 - 1943, SCI(-E); Scopus.
4Ngô Đắc Tân, On vertex disjoint cycles of different lengths in 3-regular digraphs, Discrete Mathematics 338 (2015), 2485 - 2491, SCI(-E), Scopus.
5Ngô Đắc Tân, Vertex disjoint cycles of different lengths in d-arc-dominated digraphs, Operations Research Letters, 42 (2014), 351 - 354,SCI(-E), Scopus.
6Ngô Đắc Tân, On d-arc-dominated oriented graphs, Graphs and Combinatorics, 30, (2014), 1045 - 1054, SCI(-E); Scopus.
7Ngô Đắc Tân, The completion of a classification for maximal nonhamiltonian Burkard-Hammer graphs, Vietnam Journal of Mathematics 41 (2013), 465 - 505, Scopus.
8Ngô Đắc Tân, 3-arc-dominated digraphs, SIAM Journal on Discrete Mathematics, 24 (2010), 1153 - 1161, SCI(-E); Scopus.
9Ngô Đắc Tân, On the hamiltonian and classification problems for some families of split graphs, Vietnam J. Math., 37 (2009), 379-386.
10Ngô Đắc Tân, Ch. Iamjaroen, A classification for maximal nonhamiltonian Burkard-Hammer graphs, Discuss. Math. Graph Theory 28 (2008), 67 - 89.
11Ngô Đắc Tân, On a problem of Froncek and KubesaAustralas. J. Combin. 40 (2008), 237 - 245.
12Ngô Đắc Tân, Le Xuan Hung, On colorings of split graphs, Acta Math. Vietnamica 31 (2006) 195 -204.
13Ngô Đắc Tân, A note on maximal nonhamiltonian Burkard-Hammer graphs, Vietnam J. Math. 34 (2006), 397 - 409.
14Ngô Đắc Tân, Ch. Iamjaroen, A necessary condition for maximal nonhamiltonian Burkard-Hammer graphs, J. Discrete Math. Sci. Cryptogr. 9 (2006), 235 - 252.
15Ngô Đắc Tân, On the classification problem for tetravalent metacirculant graphs, J. Discrete Math. Sci. Cryptogr. 8 (2005), N0 3, 403 - 412.
16Ngô Đắc Tân, Tran Minh Tuoc, Connectedness of tetravalent metacirculant graphs with non-empty first symbol, In: The Mathematical Foundation of Informatics (Proceedings of the Conference in Hanoi, October 25 - 28, 1999. Eds. Do Long Van and Ito M.), 183 - 193. World Scientific, Singapore 2005.
17Ngô Đắc Tân, Tran Minh Tuoc, An algorithm for determining connectedness of tetravalent metacirculant graphs, Australas. J. Combin. 32 (2005), 259 - 277.
18Ngô Đắc Tân, L. X. Hung, On the Burkard-Hammer condition for Hamiltonian split graphs, Discrete Math. 296 (2005), 59 - 72.
19Ngô Đắc Tân, Ch. Iamjaroen, Constructions for nonhamiltonian Burkard-Hammer graphs, In: Proceedings of the Indonesia-Japan Joint Conference on Combinatorial Geometry and Graph Theory (September 13 - 16, 2003, Bandung, Indonesia), 185 - 199. Lecture Notes in Computer Science 3330, Springer, Berlin Heidelberg 2005.
20Ngô Đắc Tân, Combinatorics and graph theory (in Vietnamese) – Lý thuyết tổ hợp và đồ thị. NXB ĐHQG Hanoi, 2004, 344 trang.
21Ngô Đắc Tân, Le Xuan Hung, Hamilton cycles in split graphs with large minimum degree, Discussiones Math. Graph Theory 24 (2004), 23 - 40.
22Ngô Đắc Tân, Tran Minh Tuoc, Hamilton cycles in connected tetravalent metacirculant graphs with non-empty first symbol, Acta Math. Vietnamica, 28, (2003) 267 - 278.
23Ngô Đắc Tân, The automorphism groups of certain tetravalent metacirculant graphs. Ars Combin. 66 (2003), 205 - 232.
24Ngô Đắc Tân, On non-Cayley tetravalent metacirculant graphs. Graphs Combin. 18 (2002), 795 - 802.
25Ngô Đắc Tân, Classification and Hamiltonian problems for cubic and tetravalent metacirculant graphs, In: Proc. Fifth Vietnamese Math. Conf., (Hanoi, September 17 - 20, 1997, Eds. Tran Duc Van and Dinh Dung), 187 - 195. Science and Technology Publisher, Hanoi 1999.
26Ngô Đắc Tân, Sufficient conditions for the existence of a Hamilton cycle in cubic (6, n)-metacirculant graphs, II. Vietnam J. Math. 26 (1998), 217 - 228.
27Ngô Đắc Tân, Sufficient conditions for the existence of a Hamilton cycle in cubic (6, n)-metacirculant graphs. Vietnam J. Math. 25 (1997),  41 - 52.
28Ngô Đắc Tân, On Hamilton cycles in cubic (m, n)-metacirculant graphs, II. Australas. J. Combin. 14 (1996), 235 - 257.
29Ngô Đắc Tân, Non-Cayley tetravalent metacirculant graphs and their hamiltonicity. J. Graph Theory 23 (1996), 273 - 287.
30Ngô Đắc Tân, Cubic (m, n)-metacirculant graphs which are not Cayley graphs. Discrete Math. 154 (1996), 237 - 244.
31Ngô Đắc Tân, On the isomorphism problem for a family of cubic metacirculant graphs. Discrete Math. 151 (1996), 231 - 242.
32Ngô Đắc Tân, On Hamilton cycles in cubic (10, n)-metacirculant graphs. Acta Math. Vietnam. 20 (1995), N0 2, 247 - 255.
33Ngô Đắc Tân, Hamilton cycles in some vertex-transitive graphs. Southeast Asian Bull. Math. 19 (1995), 61 - 67.
34Ngô Đắc Tân, A characterization of some cubic (m, n)-metacirculant graphs. Acta Math. Vietnam. 19 (1994), N0 1, 61 - 66.
35Ngô Đắc Tân, Hamilton cycles in cubic (m, n)-metacirculant graphs with m divisible by 4. Graphs and Combin. 10 (1994), 67 - 73.
36Ngô Đắc Tân, Connectedness of cubic metacirculant graphs. Acta Math. Vietnam. 18 (1993), 3 - 17.
37Ngô Đắc Tân, On Hamilton cycles in cubic (m, n)-metacirculant graphs. Australas. J. Combin. 8 (1993), 211 - 232.
38Ngô Đắc Tân, Hamilton cycles in cubic (4, n)-metacirculant graphs. Acta Math. Vietnam. 17 (1992), 83 - 93.
39Ngô Đắc Tân, On cubic metacirculant graphs. Acta Math. Vietnam. 15 (1990), 57 - 71.
40Ngô Đắc Tân, R. I. Tyshkevich, A generalization of Babai's lemma on Cayley graphs. Vestsi Akad. Navuk BSSR, Ser. Fiz.-Mat. Navuk 4 (1987), 29 - 32 (in Russian).
41Ngô Đắc Tân, On imprimitive nilpotent irregular minimal transitive groups which are cubic graphical, In: Proc. Symp. Math. Found. Comp. Sci. and Data Security, Hanoi, July 4-6, 1986, 113 - 117 (in Vietnamese).
42Ngô Đắc Tân, Trivalent graphic primitive minimal transitive permutation groups. Vestsi Akad. Navuk BSSR, Ser. Fiz.-Mat. Navuk 6 (1986), 32 - 37 (in Russian).
43Ngô Đắc Tân, Minimal transitive permutation groups and related problems of graph theory. Ph. D. Thesis, Belarussian State Univ., Minsk, 1985, 134 p. (in Russian).
44Ngô Đắc Tân, Nilpotent pronormal minimal transitive permutation groups. Vestsi Akad. Navuk BSSR, Ser. Fiz.-Mat. Navuk 5 (1985), 21 - 26 (in Russian).
45Ngô Đắc Tân, On minimal transitive permutation groups on a countable set. Vestsi Akad. Navuk BSSR, Ser. Fiz.-Mat. Navuk 1 (1979), 12 - 18 (in Russian).
46Ngô Đắc Tân, Uber abelscher Gruppen, deren voller Endomorphismenring ein EEk MI-Ring (k = 1, 2) ist. Annales Univ. Sci. Budapest. Eotvos, Sect. Math. 22/23 (1979/1980), 75 - 85.
47Ngô Đắc Tân, On minimal transitive permutation groups. Vestsi Akad. Navuk BSSR, Ser. Fiz.-Mat. Navuk 6 (1976), 5 - 14 (in Russian).