Phan Thành An


Phòng Giải tích số và tính toán khoa học
Hướng nghiên cứu: Tối ưu, tính toán khoa học

Liên hệ
Phòng làm việc: 212, Nhà A5
Điện thoại: +84 24 37563474 / 212
Email: thanhan AT; thanhan AT
Trang web cá nhân:

Lý lịch khoa học

  • Đại học: 1990, Đại học Vinh
  • Tiến sĩ: 1999 tại Đại học Vinh
  • Phó giáo sư: 2009 tại Viện Toán học

Chuyên ngành: Tối ưu, Hình học Tính toán

Các vị trí công tác đã qua

  • 2000-nay: Viện Toán học (nghiên cứu viên cao cấp từ 2018)
  • 2000-2015: Đại học Heidelberg, FU Berlin, Trung tâm Vật lý lý thuyết - Trieste: Postdoc, trao đổi khoa học
  • 2009-2014: Đại học Lisbon: nghiên cứu viên
  • 1990-2000: Đại học Vinh: giảng viên Toán
  • 2017 - 2018: Giáo sư mời tại Đại học São Paulo, Bra-xin

Các lĩnh vực quan tâm: Tối ưu, Giải tích số, Tính toán Khoa học, Hình học tính toán

Nghiên cứu sinh đã bảo vệ thành công luận án Tiến sĩ: 3

xem danh sách tại:


Danh sách Mathscinet

Danh sách gần đây
1Phan Thành An, Le Hong Trang, Computing approximately shortest descending paths on convex terrains via multiple shooting, Computational and Applied Mathematics, 37 (5) (2018), pp. 6499-6529. (SCI-E), Scopus.
2Phan Thành An, Finding Shortest Paths in a Sequence of Triangles in 3D by the Method of Orienting Curves, Optimization, 67 (2018), 159-177,SCI(-E); Scopus.
3T. V. Hoai, Phan Thành An, N. N. Hai, Multiple shooting approach for computing approximately shortest paths on convex polytopes, Journal of Computational and Applied Mathematics, 317 (2017), 235–246, (SCI-E); Scopus.
4Le Hong Trang, Attila Kozma, Phan Thành An, and Moritz Diehl, A sequential convex programming algorithm for minimizing a sum of Euclidean norms with non-convex constraints, Optimization Methods and Software, 31 (2016), 187-203, SCI(-E); Scopus.
5Phan Thành An, Dinh Thanh Giang, A direct method for determining the lower convex hull of a finite point set in 3D, Proceedings of 3rd International Conference on Computer Science, Applied Mathematics and Applications - ICCSAMA 2015, May 11-13, Metz, France, Advances in Intelligent Systems and Computing, Springer, Vol. 358, 2015, pp. 15-26.
6Phan Thành An, D. T. Giang, L. H. Trang, An exact algorithm for minimizing a sum of Euclidean norms on rays in 2D and 3D, Numerical Functional Analysis and Optimization, 36 (2015), 405–418, SCI(-E), Scopus.
7Phan Thành An, Nguyen Ngoc Hai, Tran Van Hoai, Le Hong Trang, On the performance of triangulation-based multiple shooting method for 2D shortest path problems, LNCS Transactions on Large Scale Data and Knowledge Centered Systems, Springer, 2014, 45-56.
8Phan Thành An, N. N. Hai, and T. V. Hoai, The role of graph for solving some geometric shortest path problems in 2D and 3D, Proceedings of the 5th FTRA International Conference on Computer Science and its Applications (CSA-13), Danang, Vietnam, December 18 - 21, 2013, 2013, Lecture Notes in Electrical Engineering (LNEE), Springer, Vol. 279, pp. 179-184, 2014.
9Phan Thành An, Le Hong Trang, An efficient convex hull algorithm for finite point sets in 3D based on the Method of Orienting Curves, Optimization, 62 (2013), 975-988, SCI(-E); Scopus.
10Phan Thành An, Nguyen Ngoc Hai and Tran Van Hoai, The role of convexity for solving some shortest path problems in plane without triangulation, AIP Conference Proceedings, American Institute of Physics, NY, Vol. 1557 (2013), 89-93.
11Phan Thành An, Nguyen Ngoc Hai and Tran Van Hoai, Direct multiple shooting method for solving approximate shortest path problems, Journal of Computational and Applied Mathematics 244 (2013), 67 - 76, SCI(-E); Scopus.
12Nguyen Ngoc Hai, Phan Thành An, A generalization of Blaschke's convergence theorem in metric spaces, Journal of Convex Analysis, 4 (2013), 1013 - 1024, preprint IMH2012/02/01, SCI(-E); Scopus.
13Phan Thành An, T. V. Hoai, Incremental convex hull as an orientation to solving the shortest path problem, International Journal of Information and Electronics Engineering, 2 (2012), 652-655.
14Phan Thành An, Le Hong Trang, A parallel algorithm based on convexity for the computing of Delaunay tessellation, Numerical Algorithms, 59 (2012), 347 -357,SCI(-E); Scopus.
15Hoàng Xuân Phú, V. M. Pho, Phan Thành An, Maximizing strictly convex quadratic functions with bounded perturbation, Journal of Optimization Theory and Applications, 149 (2011), 1-25, SCI(-E); Scopus.
16N. N. Hai, Phan Thành An, Blaschke-type theorem and separation of disjoint closed geodesic convex sets, Journal of Optimazation Theory and Applications 3 (2011), 541 - 551, SCI(-E); Scopus.
17Phan Thành An, D. T. Giang and N. N. Hai, Some computational aspects of geodesic convex sets in a simple polygon,  Numerical Functional Analysis and Optimization, 31 (2010), 221 -231
18Phan Thành An, Method of orienting curves for determining the convex hull of a finite set of points in the plane,  Optimization,  59 (2010), 175 - 179
19Phan Thành An, Reachable grasps on a polygon of a robot arm: finding convex ropes without triangulation,  International Journal of Robotics and Automation,  4 (2010), 304 - 310.
20Phan Thành An, V. T. T. Binh, Stability of excess demand functions with respect to a strong version of Wald's axiom, Asia-Pacific Journal of Operational Research (APJOR) 26 (2009),  523-532.
21Phan Thành An, Stability of generalized convexity and monotonicity. In: Mathematical modeling, simulation, visualization and e-learning, 193 - 200, Springer, Berlin, 2008.
22Phan Thành An, Some computational aspects of Helly-type theorems. JNAIAM J. Numer. Anal. Ind. Appl. Math. 3 (2008), 269 - 274.
23Phan Thành An, P. L. Na and N. Q. Chung, On parametric domain for asymptotic stability with probability one of zero solution of linear Ito stochastic differential equations, Ital. J. Pure Appl. Math., (2007), 129 - 138.
24Phan Thành An, Helly-type theorems for roughly convex-like sets, Numer. Funct. Anal. Optim. 28 (2007), 553 - 558.
25Phan Thành An, A modification of Graham's algorithm for determining the convex hull of a finite planar set, Ann. Math. Inform. 34 (2007), 3 - 8.
26Phan Thành An, Stability of generalized monotone maps with respect to their characterizations, Optimization, 55 (2006),  289-299.
27Phan Thành An, A new type of stable generalized convex functions. JIPAM. J. Inequal. Pure Appl. Math. 7 (2006), 10 pp.
28Phan Thành An, Nonemptiness of approximate subdifferentials of midpoint $\delta$-convex functions, Numer. Funct. Anal. Optim. 26 (2005), 735 - 738.
29Phan Thành An, Outer $\gamma$-convex functions on a normed space,  JIPAM.J. Inequal. Pure Appl. Math. 6 (2005), 8 pp.
30Phan Thành An, Nguyen Ngoc Hai, δ-Convexity in Normed Linear Spaces, Numer. Funct. Anal. Optim. 25 (2004), 407 - 422.
31Hoàng Xuân Phú, N.N. Hai, Phan Thành An, Piecewise constant roughly convex functions, J. Optim. Theory Appl. 117 (2003), 415 - 438.
32Hoàng Xuân Phú, Phan Thành An, Outer $\gamma$-convexity in normed linear spaces. Vietnam J. Math. 27 (1999), 323 - 334.
33Hoàng Xuân Phú, Phan Thành An, Stability of generalized convex functions with respect to linear disturbances, Optimization 46 (1999), 381 - 389.
34Hoàng Xuân Phú, Phan Thành An, Stable generalization of convex functions. Optimization 3 (1996), 309 - 318.
Tiền ấn phẩm
1IMH20161101, Nguyen Ngoc Hai, Phan Thành An, Phong Thị Thu Huyền, Shortest Paths along a Sequence of Line Segments in Euclidean Spaces.