Wall-crossing for K-theoretic quasimap invariants
Speaker: Yang Zhou (Fudan University)

Time: 14h (Vietnam time), Friday 25/3/2022

Join Zoom Meeting

https://us02web.zoom.us/j/89603210669?pwd=dDJyYnJHd3A5WlR1cFFkRUlYa3loUT09

Meeting ID: 896 0321 0669
Passcode: 340252

Abstract: For a large class of GIT quotients, the moduli of epsilon-stable quasimaps is a proper Delinge-Mumford stack with a perfect obstruction theory. Thus K-theoretic epsilon-stable quasimap invariants are defined.

As epsilon tends to infinity, it recovers the K-theoretic invariants; and as epsilon decreases, fewer and fewer rational tails are allowed in the domain curves. There is a wall and chamber structure on the space of stability conditions.

In this talk, we will describe a master space construction involving the moduli spaces on the two sides of a wall, leading to the proof of a wall-crossing formula.

A key ingredient is keeping track of the S_n-equivariant structure on the K-theoretic invariants.

For general information of the AGEA seminar, please check out

https://sites.google.com/ncts.ntu.edu.tw/agea-seminar

or the mirror site

http://www.math.ntu.edu.tw/~jkchen/agea-seminar.html

Trở lại