Người báo cáo: Ngô Bảo Châu (Viện Nghiên cứu cao cấp về Toán và Đại học Chicago)
Thời gian: 9h, Thứ tư 13/12/2017. Địa điểm: Phòng Semina Tầng 6, Nhà A6, Viện Toán học, 18 Hoàng Quốc Việt, Hà Nội Tóm tắt: We explore the structure of the Hitchin fibration for higher dimensional algebraic varieties with emphasis in the case of surfaces. In his original paper, which addresses the case of curves, Hitchin constructs certain spectral curves whose compactified Jacobians can be identified with the fibers in the Hitchin fibration. In higher dimension case, one can construct canonical spectral covers with possibly “very bad” singularities. In the surface cases, we can construct canonical finite Cohen-Macaulayfications of spectral covers. These Cohen-Macaulayfication spectral covers are instrumental in describing Hitchin fibers. It would be very interesting to find Cohen-Macaulayfication of spectral covers in dimension >2
|