Existence and non-existence of solutions for semilinear bi$-\Delta_{\gamma}-$Laplace equation
Người báo cáo: TS Dương Trọng Luyện (Đại học Hoa Lư)

Thời gian: 9h30 ngày 05/07/2022

Địa điểm: 301, A5, Viện Toán học

Tóm tắt: In this talk, we study existence and non-existence of weak solutions for semilinear bi$-Delta_{gamma}-$Laplace equation
 begin{gather*}

Delta^2_gamma u=f(x,u) text{ in }Omega, quad

u= partial_
u u =0 ; text{ on }partialOmega,

 end{gather*}

where $Omega$ is a bounded domain with smooth boundary in $mathbb{R}^N (N ge 2), f(x,xi) $ is a Carath'eodory functions and $ Delta_{gamma}$ is the subelliptic operator of the type
$$

Delta_gamma: =sumlimits_{j=1}^{N}partial_{x_j} left(gamma_j^2 partial_{x_j} right), quad partial_{x_j}:
=frac{partial }{partial x_{j}}, gamma = (gamma_1, gamma_2, ..., gamma_N),quad Delta^2_gamma: =Delta_gamma(Delta_gamma).
$$

Trở lại