An observation on tangent cones of definable sets
Người báo cáo: Nguyễn Xuân Việt Nhân (Đại học FPT, Đà Nẵng)

Thời gian: 09h00, thứ năm, ngày 15/09/2022.

Hình thức: Offline, địa điểm: Phòng 302, nhà A5.

Online: google meet link: meet.google.com/zsh-jnxc-eit

Abstract: In the talk, we shall define tangent cones of definable sets in terms of ultralimits. Using these definitions, we can reprove Sampaio's theorem which says that the tangent cone of a definable germ is a bi-Lipschitz invariant. We prove further that if two unbounded definable sets are quasi-isometric then their tangent cones at infinity are bi-Lipschitz equivalent.

Trở lại

08/12/22, Hội nghị, hội thảo:
Winter School on Mathematical Models and Dynamical Systems
16/12/22, Bài giảng viện:
Arational blowdown surgery on 4-manifolds
19/12/22, Hội nghị, hội thảo:
Một số vấn đề trong hình học và tô pô
08/08/23, Hội nghị, hội thảo:
Đại hội Toán học Việt Nam lần thứ X

Công bố khoa học mới