First stability eigenvalue of singular hypersurfaces with constant mean curvature in spheres
Người báo cáo: Nguyễn Thạc Dũng (Trường Đại học khoa học tự nhiên-ĐHQGHN)

Thời gian: 9h00, thứ năm, ngày 16/12/2021.

Hình thức: Trực tuyến link google meet: meet.google.com/zsh-jnxc-eit

Tóm tắt: In this talk, we study the first eigenvalue of the Jacobi operator on an integral $n$-varifold with constant mean curvature in the unit sphere $mathbb{S}^{n+1}$. We found the optimal upper bound and prove a rigidity result characterizing the case when it is attained. This gives a new characterization for certain singular Clifford tori. This talk is based on a joint work with Juncheol Pyo and Hung Tran.

Trở lại

Công bố khoa học mới