Levenberg–Marquardt method for non-smooth ill-posed inverse problems in Banach spaces (tiếp theo)
Người báo cáo: Vũ Hữu Nhự (Đại học Phenikaa)

Thời gian: 9h00 đến 10h00 sáng thứ 4 ngày 24/11/2021 theo hình thức trực tuyến.

Link seminar: meet.google.com/gaq-qqdn-wzh

Tóm tắt báo cáo: In this talk, we propose a Levenberg–Marquardt method with general regularization terms that are uniformly convex on bounded sets to solve the ill-posed inverse problems in Banach spaces, where the forward mapping might not be Gateaux differentiable and the image space is unnecessarily reflexive. The method therefore extends the one proposed by Jin and Yang in (Numer. Math. 133:655–684, 2016) for smooth inverse problem setting with globally uniformly convex regularization terms. We prove a novel convergence analysis of the proposed method under some standing assumptions, in particular, the generalized tangential cone condition and a compactness assumption. All these assumptions are fulfilled when investigating the identification of the heat source for semilinear elliptic boundary-value problems with a Robin boundary condition, a heat source acting on the boundary, and a possibly non-smooth nonlinearity. Therein, the Clarke subdifferential of the non-smooth nonlinearity is employed to construct the family of bounded operators that is a replacement for the non-existing Gateaux derivative of the forward mapping. The efficiency of the proposed method is illustrated with a numerical example.

Trở lại

09/12/22, Hội nghị, hội thảo:
Winter School on Mathematical Models and Dynamical Systems
16/12/22, Bài giảng viện:
Arational blowdown surgery on 4-manifolds
19/12/22, Hội nghị, hội thảo:
Một số vấn đề trong hình học và tô pô
08/08/23, Hội nghị, hội thảo:
Đại hội Toán học Việt Nam lần thứ X

Công bố khoa học mới