On the weak and strong Lefschetz properties of artinian graded algebras
Báo cáo viên: Tran Quang Hoa (University of Education, Hue University and VIASM)

Thời gian: 9h, Thứ 4, ngày 4 tháng 3 năm 2020

Địa điểm: Phòng 611-612, Tầng 6, Nhà A6, Viện Toán học

Tóm tắt: The strong Lefschetz property for an Artinian graded algebra A over a field K simply says that for a general linear form L, the multiplication ×L^s: [A]_i ---> [A]_(i+s) has maximal rank in every degree i and every positive integer s. In particular, if the multiplication by a general linear form ×L : [A]_i ---> [A]_(i+1) has maximal rank in every degree i, then A is said to have the weak Lefschetz property. At first glance this might seem to be a simple problem of linear algebra. However, determining which graded Artinian K-algebras have the weak and/or strong Lefschetz property is notoriously difficult and it is strongly connected to many topics in algebraic geometry, commutative algebra and combinatorics. Some of these connections are quite surprising and still not completely understood, and much work remains to be done. In this talk, I will give an overview of known results on the weak and strong Lefschetz properties, with an emphasis on the approaches and tools that have been used. I also discuss open problems.

Trở lại

09/12/22, Hội nghị, hội thảo:
Winter School on Mathematical Models and Dynamical Systems
16/12/22, Bài giảng viện:
Arational blowdown surgery on 4-manifolds
19/12/22, Hội nghị, hội thảo:
Một số vấn đề trong hình học và tô pô
08/08/23, Hội nghị, hội thảo:
Đại hội Toán học Việt Nam lần thứ X

Công bố khoa học mới