Limit theorem for a SIR model on a random graph
Báo cáo viên: Jean-Stéphane Dhersin (University Paris 13)

Thời gian: 14h thứ 6, ngày 27/4/2018

Địa điểm: Phòng 302, Nhà A5, Viện Toán học

Tóm tắt: We consider a SIR epidemic model propagating on a random network generated by a configuration model, where the degree distribution of the vertices is given and where the edges are randomly matched. The evolution of the epidemics is summed up into three measure-valued equations that describe the degrees of the susceptible individuals and the number of edges from an infectious or removed individual to the set of susceptible. These three degree distributions are sufficient to describe the course of the disease. The limit in large population is investigated. As a corollary, this provides a rigorous proof of equations obtained by Volz.

Trở lại

31/10/22, Hội nghị, hội thảo:
International school on algebraic geometry and algebraic groups
08/08/23, Hội nghị, hội thảo:
Đại hội Toán học Việt Nam lần thứ X

Công bố khoa học mới