HOẠT ĐỘNG TRONG TUẦN

Zakharov system on the background of a line soliton
Người báo cáo: Lương Thái Hưng

Thời gian: 9h30, Thứ 3, ngày 16/2/2016
Địa điểm: Phòng 4, Nhà A14, Viện Toán học, 18 Hoàng Quốc Việt Cầu Giấy, Hà Nội
Tóm tắt: The (2-D) (scalar) Zakharov system has the form
[
 left {
   begin{aligned}
    & i partial_t u + Delta u = n u
    & dfrac{1}{lambda^2} partial_t^2 n - Delta n = Delta |u|^2.
   end{aligned}
right.
]
Where $ (x,y,t) in R^2 times R $, $lambda$ is a fixed real number, $u$ is a complex valued function and $n$ is  a real function, with initial data $(u_0, n_0, n_1)$.
The Zakharov system describe the propagation of Langmuir waves in plasma and was studied by many authors and various methods. In this talk, I represent some classical result about the Cauchy problem for the Zakharov system and, then, present our recent result on the Cauchy problem for its perturbation on the background of the line soliton footnote{The 1-d soliton of the 1-d focusing nonlinear Schr"odinger equation.} . One can consider it as the first step to study the transverse stability (or instability) of the line soliton.

Trở lại

Công bố khoa học mới