Người báo cáo: Đỗ Trọng Hoàng (Viện Toán học)
Thời gian: 9h, Thứ tư 1/11/2017. Địa điểm: Phòng Semina Tầng 6, Nhà A6, Viện Toán học, 18 Hoàng Quốc Việt, Hà Nội Tóm tắt: Given a simple graph G, one can associate a binomial ideal J_G, called the binomial edge ideal of G, which is generated by x_iy_j - x_jy_i, where ij is an edge of G. It is known that in(J_G), the initial ideal of J_G with respect to the lexicographic order, is a square-free monomial ideal if and only if the graph G is a closed graph. In general, the Betti numbers of J_G are less than or equal to those of in(J_G). In 2011, Herzog, Hibi and Ene conjectured that the Betti numbers of J_G and in(J_G) are equal. In this talk, we introduce the concepts necessary to understand this conjecture and we prove the conjecture for some cases. This is a joint work with Hernán de Alba Casillas. |