Ngô Việt Trung


GS. TSKH. NCVCC

Phòng Đại số
Hướng nghiên cứu: Đại số giao hoán và ứng dụng trong hình học đại số


Liên hệ
Phòng làm việc: 416, Nhà A6
Điện thoại: +84 (024 38361121 / 416
Email: nvtrung AT math.ac.vn

Giải thưởng

  • Giải thưởng Hồ Chí Minh về Khoa học và Công nghệ năm 2016 (chung với GS Nguyễn Tự Cường và GS Lê Tuấn Hoa)
  • Giải thưởng Nhân tài đất Việt trong lĩnh vực Khoa học tự nhiên về Toán học năm 2009


DANH SÁCH CÔNG TRÌNH

Danh sách trong Mathscinet

Danh sách gần đây
1Hà Huy Tài, Nguyễn Đăng Hợp, Ngô Việt Trung, Trần Nam Trung, Depth functions of powers of homogeneous ideals. Proceedings of the American Mathematical Society, 149 (2021), 1837–1844, (SCI-E, Scopus).
2Claudia Polini, Ngô Việt Trung, Bernd Ulrich, Javid Validashti, Multiplicity sequence and integral dependence, Mathematische Annalen 378 (2020), 951-969. (SCI-E, Scopus).
3 Hà Huy Tài, Nguyễn Đăng Hợp, Ngô Việt Trung, Trần Nam Trung, Symbolic powers of sums of ideals, Mathematische Zeitschrift, 294 (2020), pages1499–1520, SCI(-E), Scopus.
4Nguyễn Đăng Hợp, Ngô Việt Trung, Correction to: Depth functions of symbolic powers of homogeneous ideals, Inventiones mathematicae, 218 (2019), pages 829–831, SCI(-E), Scopus.
5Nguyễn Đăng Hợp, Ngô Việt Trung, Depth functions of symbolic powers of homogeneous ideals, Inventiones mathematicae, 218 (2019), 779–827, SCI(-E), Scopus.
6Hà Minh Lam, Ngô Việt Trung, Associated primes of powers of edge ideals and ear decompositions of graphs, Transactions of the American Mathematical Society 372 (2019), 3211-3236 SCI(-E), Scopus.
7Giulio Cavigli, Hà Huy Tài, Jürgen Herzog, Manoj Kummini, Naoki Terai, Ngô Việt Trung, Depth and regularity modulo a principal ideal. Journal of Algebraic Combinatorics 49 (2019), no. 1, 1–20, SCI(-E), Scopus.
8Hà Huy Tài, Ngô Việt Trung, Membership Criteria and Containments of Powers of Monomial Ideals, Acta Mathematica Vietnamica, 44 (2019), pp 117–139, Scopus.
9Maria Evelina Rossi, Dinh Thanh Trung, Ngô Việt Trung, Castelnuovo-Mumford regularity and Ratliff-Rush closure. Journal of Algebra 504 (2018), 568-586, SCI(-E); Scopus.
10Gregor Kemper, Ngô Việt Trung, Nguyen Thi Van Anh, Toward a theory of monomial preorders, Mathematics of Computation 87 (2018), no. 313, 2513-2537, SCI(-E); Scopus.
11Ha Huy Tài, Ngô Việt Trung, Trần Nam Trung, Depth and regularity of powers of sums of ideals. Mathematische Zeitschrift 282 (2016), 819–838, SCI(-E); Scopus.
12Ha Thi Thu Hien, Hà Minh Lam, Ngô Việt Trung, Saturation and associated primes of powers of edge ideals, Journal of Algebra, 439 (2015), 225–244, SCI(-E); Scopus.
13Hong Ngoc Binh, Ngô Việt Trung, The Bhattacharya function of complete monomial ideals in two variables, Communications in Algebra, 43 (2015), 2875-2886, SCI(-E), Scopus.
14Naoki Terai, Ngô Việt Trung, On the associated primes and the depth of the second power of squarefree monomial ideals, Journal of Pure and Applied Algebra, 218 (2014), 1117–1129, SCI(-E); Scopus.
15Gregor Kemper, Ngô Việt Trung, Krull dimension and monomial orders, Journal of Algebra, 399(2014), 782–800, SCI(-E); Scopus.
16Ngô Việt Trung, Introduction to Commutative Algebra and Algebraic Geometry (in Vietnamese), Publishing House of Vietnam Academy of Science and Technology, Hanoi, 2012.
17Ngô Việt Trung, Naoki Terai, Cohen–Macaulayness of large powers of Stanley–Reisner ideals, Advances in Mathematics, 229 (2012), 711 -- 730, SCI(-E); Scopus.
18Ngô Việt Trung, T. M. Tuan, Equality of ordinary and symbolic powers of Stanley-Reisner ideals, Journal of Algebra,  328 (2011), 77 - 93, preprint arXiv:1009.0828, SCI(-E); Scopus.
19Ngô Việt Trung, N. C. Minh, Cohen-Macaulayness of monomial ideals and symbolic powers of Stanley-Reisner ideals. Advances in Mathematics 226 (2011), 1285 - 1306, SCI(-E); Scopus.
20Ngô Việt Trung, J. K. Verma, Hilbert functions of multigraded algebras, mixed multiplicities of ideals and their applications, Journal of Commutative Algebra, 2 (2010), 515 -- 565, SCI(-E); Scopus.
21Nguyen Cong Minh, Ngô Việt Trung, Cohen-Macaulayness of powers of two-dimensional squarefree monomial ideals, J. Algebra, 322 (2009), 4219-4227.
22J. Herzog, T. Hibi, Ngô Việt Trung, Vertex cover algebras of unimodular hypergraphs, Proc. Amer. Math. Soc., 137 (2009), 409-414, preprint arXiv:math/0703577.
23Juergen Herzog, Takayuki Hibi, Satoshi Murai, Xinxian Zheng, Ngô Việt Trung, Kruskal-Katona type theorems for clique complexes arising from chordal and strongly chordal graphs, Combinatorica 28 (2008), 315 - 323, preprint arXiv:math/0606477.
24Jürgen Herzog, Takayuki Hibi, Ngô Việt Trung, Xinxian Zheng, Standard graded vertex cover algebras, cycles and leaves, Trans. Amer. Math. Soc. 360 (2008), 6231 - 6249, preprint arXiv:math/0606357.
25Marc Chardin, Nguyen Cong Minh, Ngô Việt Trung, On the regularity of products and intersections of complete intersections, Proc. Amer. Math. Soc. 135 (2007),  1597 - 1606, preprint arXiv:math/0503157.
26Jürgen Herzoga, Takayuki Hibib, Ngô Việt Trung, Symbolic powers of monomial ideals and vertex cover algebras, Adv. Math. 210 (2007), 304 - 322.
27Ngô Việt Trung, Jugal Verma , Mixed multiplicities of ideals versus mixed volumes of polytopes, Trans. Amer. Math. Soc. 359 (2007), 4711 - 4727, preprint arXiv:math/0504178.
28Ngô Việt Trung, Castelnuovo-Mumford regularity and related invariants. In: Commutative algebra and combinatorics, 157 - 180, Ramanujan Math. Soc. Lect. Notes Ser. 4, Ramanujan Math. Soc., Mysore, 2007.
29Maria Evelina Rossi, Ngô Việt Trung, Giuseppe Val, Castelnuovo-Mumford regularity and finiteness of Hilbert functions, Commutative algebra, 193 - 209, 2006, preprint arXiv:math/0407398.
30Cao Huy Linh, Ngô Việt Trung, Uniform bounds in generalized Cohen-Macaulay rings, J. Algebra 304 (2006), 1147 - 1159, preprint arXiv:math/0606639.
31Ngô Việt Trung, Integral closures of monomial ideals and Fulkersonian hypergraphs, Vietnam J. Math. 34 (2006), 489 - 494.
32Ngô Việt Trung, Hsin-Ju Wang, On the asymptotic linearity of Castelnuovo-Mumford regularity, J. Pure Appl. Algebra 201 (2005), 42 - 48.
33Ngô Việt Trung, Galois Theory (in Vietnamese), National University Press, Hanoi, 2005.
34Craig Huneke, Ngô Việt Trung, On the core of ideals. Compos. Math. 141 (2005), 1 - 18.
35Ha Huy Tai, Ngô Việt Trung, Asymptotic behaviour of arithmetically Cohen-Macaulay blow-ups. Trans. Amer. Math. Soc. 357 (2005), 3655 - 3672.
36Nguyên Duc Hoang, Ngô Việt Trung, Hilbert polynomials of non-standard bigraded algebras, Math. Z. 245 (2003), 309 - 334. 4.
37Ngô Việt Trung, Constructive characterization of the reduction numbers, Compositio Math. 137 (2003), 99 - 113.
38Maria Evelina Rossi, Ngô Việt Trung, Giuseppe Valla, Castelnuovo-Mumford regularity and extended degree,  Trans. Amer. Math. Soc. 355 (2003), 1773 - 1786.
39Lê Tuấn Hoa, Ngô Việt Trung, Borel-fixed ideals and reduction number, J. Algebra 270 (2003), N0 1, 335 - 346.
40 J. Herzog, D. Popescu, Ngô Việt Trung, Regularity of Rees algebras. J. London Math. Soc. (2) 65 (2002), 320 - 338.
41Ngô Việt Trung, Evaluations of initial ideals and Castelnuovo-Mumford regularity. Proc. Amer. Math. Soc. 130 (2002), 1265 - 1274 (electronic).
42Ngô Việt Trung, W. Bruns and J. Gubeladze, Problems and algorithms for affine semigroups. Semigroup Forum 64 (2002), 180 - 212.
43Jürgen Herzog, Lê Tuấn Hoa, Ngô Việt Trung, Asymptotic linear bounds for the Castelnuovo-Mumford regularity, Trans. Amer. Math. Soc. 354 (2002),  1793 - 1809 (electronic).
44Ngô Việt Trung, Lectures on linear algebra (in Vietnamese) - Giáo trình đại số tuyến tính. NXB ĐHQG Hà Nội, 2001, 272 trang.
45Aldo Conca, Ngô Việt Trung, Giuseppe Valla, Koszul property for points in projective spaces, Math. Scand. 89 (2001), 201 - 216.
46Ngô Việt Trung, Positivity of mixed multiplicities, Math. Ann. 319 (2001), 33 - 63.
47Ngô Việt Trung, Groebner bases, local cohomology and reduction number. Proc. Amer. Math. Soc. 129 (2001), 9 - 18.
48Dam Van Nhi, Ngô Việt Trung, Specialization of modules over a local ring. Commutative algebra, homological algebra and representation theory (Catania/Genoa/Rome, 1998). J. Pure Appl. Algebra 152 (2000), N0 1-3, 275 - 288.
49Ngô Việt Trung, Castelnuovo-Mumford regularity and analytic deviation of ideals. J. London Math. Soc. (2) 62 (2000), 41 - 55.
50Ngô Việt Trung, The largest non-vanishing degree of graded local cohomology modules. J. Algebra 215 (1999), 481 - 499.
51S. Dale Cutkosky, Jürgen Herzog, Ngô Việt Trung, Asymptotic behaviour of Castelnuovo-Mumford regularity. Compositio Math. 118 (1999), 243 - 261.
52Dam Van Nhi, Ngô Việt Trung, Specialization of modules. Comm. Algebra 27 (1999), 2959 - 2978.
53Ngô Việt Trung, The Castelnuovo regularity of the Rees algebra and the associated graded ring. Trans. Amer. Math. Soc. 350 (1998), 2813 - 2832.
54A. Simis, Ngô Việt Trung, G. Valla, The diagonal subalgebras of a blow-up ring. J. Pure Appl. Algebra 125 (1998), 305 - 328.
55Lê Tuấn Hoa, Ngô Việt Trung, On the Castelnuovo-Mumford regularity and the arithmetic degree of monomial ideals. Math. Z. 229 (1998), 519 - 537.
56Aldo Conca, Giuseppe Valla, Jurgen Herzog, Ngô Việt Trung, Diagonal subalgebras and embbedings of blow-ups of projective spaces. Amer. J. Math. 119 (1997), 859 - 901.
57W. Bruns, J. Gubeladze, Ngô Việt Trung, Normal polytopes, triangulations and Koszul algebras. J. Reine Angew. Math. 485 (1997), 123 - 160.
58Ngô Việt Trung, On the lifting of determinantal ideals. Manuscripta Math. 91 (1996), 467 - 481.
59J. Aberbach, C. Huneke, Ngô Việt Trung, Reduction numbers, Briancon-Skoda theorem and the depth of Rees rings. Compositio Math. 97 (1995), 403 - 434.
60Ngô Việt Trung, G. Valla, Upper bounds for the regularity index of fat points with uniform position property. J. Algebra 176 (1995), 182 - 209.
61Bernd Sturmfels, Ngô Việt Trung, Wolfgang Vogel, Bounds on degrees of projective schemes. Math. Ann. 302 (1995), 417 - 432.
62Ngô Việt Trung, Giuseppe Valla, On zero-dimensional subschemes of complete intersections. Math. Z. 219 (1995), 187 - 201.
63Ngô Việt Trung, Manfred Herrmann, Eero Hyry, Jürgen Ribbe, On multi-Rees algebras. Math. Ann. 301 (1995), 249 - 279.
64Ngô Việt Trung, D.Q. Viet, S. Zarzuela, When is the Rees algebra Gorenstein?. J. Algebra 175 (1995), 137 - 156.
65Aron Simis, Ngô Việt Trung, Giuseppe Valla, Commutative algebra (ICTP, Trieste 1992). Eds.: A. Simis, N. V. Trung and G. Valla, World Scientific, 1994.
66Ngô Việt Trung, Reduction number, a-invariant, and Rees algebras of ideals having small analytic deviation, In: Commutative Algebra (ICTP, Trieste 1992), World Scientific, 1994, 245 - 262.
67Ngô Việt Trung, An algebraic approach to the regularity index of fat points in ${\bf P}^n$. Kodai Math. J. 17 (1994), 382 - 389.
68Jürgen Herzog, Giuseppe Valla, Ngô Việt Trung, On hyperplane sections of reduced irreducible varieties of low codimension. J. Math. Kyoto Univ. 34 (1994), 47 - 72.
69 M. V. Catalisano, Ngô Việt Trung, G. Valla, A sharp bound for the regularity index of fat points in general position. Proc. Amer. Math. Soc. (1993), 717 - 724.
70Ngô Việt Trung, Filter-regular sequences and multiplicity of blow-up rings of ideals of the principal class. J. Math. Kyoto Univ. 33 (1993), 665 - 683.
71 Manfred Herrmann, Ngô Việt Trung, Examples of Buchsbaum quasi-Gorenstein rings. Proc. Amer. Math. Soc. 117 (1993), 619 - 625.
72Ngô Việt Trung, Duong Quôc Viêt, On the Cohen-Macaulay and Gorenstein property of Rees algebras of non-singular equimultiple prime ideals. Manus. Math. 76 (1992), 147 - 167.
73Jürgen Herzog, Ngô Việt Trung, Bernd Ulrich, On the multiplicity of Rees algebras and associated graded rings of d-sequences. J. Pure Appl. Algebra 80 (1992), 273 - 297.
74Jürgen Herzog, Ngô Việt Trung, Grobner bases and multiplicity of determinantal and Pfaffian ideals. Advances in Math. 96 (1992), 1 - 37.
75M. Herrmann, J. Ribbe, Ngô Việt Trung, Rees algebras of non-singular equimultiple prime ideals. Nagoya Math. J. 124 (1991), 1 - 12.
76Winfried Bruns, Aron Simis, Ngô Việt Trung, Blow-ups of straightening closed ideals in ordinal Hodge algebras. Trans. Amer. Math. Soc. 326 (1991), 509 - 518.
77M. Herrmann, J. Ribbe, Ngô Việt Trung, S. Zarzuela, Bounds for the multiplicity of almost complete intersections. Manus. Math. 72 (1991), 275 - 296.
78Ngô Việt Trung, On the presentation of Hodge algebras and the existence of Hodge algebra structures. Comm. Algebra 19 (1991), 1183 - 1195.
79 M. Morales, Ngô Việt Trung, O. Villamayor, Sur la fonction de Hilbert-Samuel des clôtures intégrales des puissances d'idéaux engendrés par un système de paramètres. J. Algebra 129 (1990), 96 - 102.
80Ngô Việt Trung, Giuseppe Valla, The Cohen-Macaulay type of points in generic position. J. Algebra 125 (1989), 110 - 119.
81Ngô Việt Trung, Shin Ikeda, When is the Rees algebra Cohen-Macaulay? Comm. Algebra 17 (12) (1989), 2893 - 2922.
82Ngô Việt Trung, Giuseppe Valla, Degree bounds for the defining equations of arithmetically Cohen-Macaulay varieties. Math. Ann. 281 (1988), 479 - 491.
83A. Simis, Ngô Việt Trung, The divisor class group of ordinary and symbolic blow-ups. Math. Zeits. 198 (1988), 479 - 491.
84Ngô Việt Trung, G. Valla, On degree bounds for the defining equations of arithmetically Cohen-Macaulay and Buchsbaum varieties. Acta Math. Vietnam. 12 (1987), 113 - 122.
85Ngô Việt Trung, Reduction exponent and degree bounds for the defining equations of graded rings. Proc. Amer. Math. Soc. 101 (1987), 229 - 236.
86Ngô Việt Trung, Towards a theory of generalized Cohen-Macaulay modules. Nagoya Math. J. 102 (1986), 1 - 49.
87Ngô Việt Trung, Lê Tuấn Hoa, Affine semigroups and Cohen-Macaulay rings generated by monomials. Trans. Amer. Math. Soc. 298 (1986), 145 - 167.
88Ngô Việt Trung, Maximum number of independent elements and dimension of prime divisors in completions of local rings. J. Algebra 93 (1985), 418 - 438.
89Ngô Việt Trung, Projections of one-dimensional Veronese varieties. Math. Nachr. 118 (1984), 47 - 67.
90Ngô Việt Trung, Degree bounds for the defining equations of projective monomial curves. Acta Math. Vietnam. 9 (1984), 157 - 163.
91Ngô Việt Trung, From associated graded modules to blowing-ups of generalized Cohen-Macaulay modules. J. Math. Kyoto Univ. 24 (1984), 611 - 622.
92Ngô Việt Trung, Bounds for the minimum number of generators of generalized Cohen-Macaulay ideals, J. Algebra 90 (1984), 1 - 9.
93Ngô Việt Trung, On tensor products of extensions of a field. Quart. J. Math. 35 (1984), 337 - 339.
94Ngô Việt Trung, Absolutely superficial sequence. Math. Proc. Cambridge Phil. Soc. 93 (1983), 35 - 47.
95Ngô Việt Trung, On certain transitivity of the graded ring associated with an ideal. Proc. Amer. Math. Soc. 85 (1982), 489 - 495.
96Ngô Việt Trung, Standard systems of parameters of generalized Cohen-Macaulay modules, In: Proceedings of the 4th Symposium on Commutative Algebra in Japan, Karuizawa, 1982, 164 - 180.
97Ngô Việt Trung, On the associated graded ring of a Buchsbaum ring, Math. Nachr. 107 (1982), 209 - 220.
98Ngô Việt Trung, Classification of the double projections of Veronese varieties. J. Math. Kyoto Univ. 22 (1982), 567 - 581.
99Ngô Việt Trung, Principal systems of ideals. Acta Math. Vietnam. 6 (1981), 57 - 63.
100Ngô Việt Trung, A characterization of two dimensional unmixed local domains. Math. Proc. Camb. Phil. Soc. 89 (1981), 237 - 239.
101Ngô Việt Trung, A class of imperfect prime ideals having the equality of ordinary and symbolic powers. J. Math. Kyoto Univ. 21 (1981), 239 - 250.
102Ngô Việt Trung, Der graduierte Ring bezuglich des Primideals von Macaulay. Beitr. Algebra Geometrie 11 (1981), 35 - 40.
103Nguyễn Tự Cường, Ngô Việt Trung, Uber schwache Sequenzen. Period. Math. Hungar. 11 (1981), 77 - 80.
104Ngô Việt Trung, Some criteria for Buchsbaum modules. Monatsh. Math. 90 (1980), 331 - 337.
105Ngô Việt Trung, Spezialisierungen allgemeiner Hyperflọchenschnitte und Anwendungen, In: Seminar D. Eisenbud - B. Singh - W. Vogel, Vol. I, Teubner-Verlag, Leipzig, 1980, 4 - 43.
106Ngô Việt Trung, Über allgemeine Hyperflächenschnitte einer algebraischen Varietät. Monatsh. Math. 89 (1980), 323 - 340.
107Ngô Việt Trung, On the symbolic powers of determinantal ideals, J. Algebra 58 (1979), 361 - 369.
108Ngô Việt Trung, Uber die ubertragung der Ringeigenschaften zwischen R und R[u]/(F). Math. Nachr. 92 (1979), 215 - 229.
109Peter Schenzel, Ngô Việt Trung, Nguyễn Tự Cường, Uber verallgemeinerte Cohen- Macaulay Moduln. Math. Nachr. 85 (1978),  57 - 73.