Hoàng Lê Trường


TS. NCVC

Phòng Đại số
Hướng nghiên cứu: Đại số giao hoán


Liên hệ
Phòng làm việc: 101, Nhà A5
Điện thoại: +84 (02)4 37563474 /101
Email: hltruong AT math.ac.vn

Nơi sinh: Nam định

Quá trình đào tạo

  • Tiến sĩ: 2013, Meiji university, Tokyo, Japan

Các lĩnh vực quan tâm: Combinatorial Commutative Algebra, Algebra geometry, Integer programming

DANH SÁCH CÔNG TRÌNH

Danh sách trong Mathscinet

Danh sách gần đây
1Nguyen Thi Dung, Nguyen Thi Thanh Tam, Hoàng Lê Trường, Hoang Ngoc Yen, Critical Paired Dominating Sets and Irreducible Decompositions of Powers of Edge Ideals, Acta Mathematica Vietnamica, 44 (2019) Issue 3, pp 587–601, Scopus.
2Hoàng Lê Trường, The eventual index of reducibility of parameter ideals and the sequentially Cohen-Macaulay property. Archiv der Mathematik, 112 (2019), 475–488, SCI(-E), Scopus.
3Nguyễn Tự Cường, Pham Hung Quy, Hoàng Lê Trường, The index of reducibility of powers of a standard parameter ideal, Journal of Algebra and Its Applications 18 (2019), 1950048, 17 pp, SCI(-E), Scopus.
4Shiro Goto, Do Van Kien, NaoyukiMatsuoka, Hoàng Lê Trường, Pseudo-Frobenius numbers versus defining ideals in numerical semigroup rings, Journal of Algebra, 508 (2018), Pages 1-15, SCI(-E); Scopus
5Hoàng Lê Trường, Chern coefficients and Cohen–Macaulay rings, Journal of Algebra, 490 (2017), 316–329,SCI(-E); Scopus.
6Shiro Goto, Mehran Rahimi, Naoki Taniguchi, Hoàng Lê Trường, When are the Rees algebras of parameter ideals almost Gorenstein graded rings?, Kyoto Journal of Mathematics, 57 (2017), 655-666,SCI(-E); Scopus.
7Thomas Hales, Mark Adams, Gertrud Bauer, Tat Dat Dang, John Harrison, Hoàng Lê Trường, Cezary Kaliszyk, Victor Magron, Sean Mclaughlin, Nguyễn Tất Thắng, Quang Truong Nguyen, Tobias Nipkow, Steven Obua, Joseph Pleso, Jason Rute, Alexey Solovyev, Tạ Thị Hoài An, Trần Nam Trung, Thi Diep Trieu, Josef Urban, Ky Vu, Roland Zumkeller, A formal proof of the Kepler onjecture, Forum of Mathematics, Pi, 5 (2017) 29 pages.
8Nguyễn Tự Cường, Pham Hung Quy, Hoàng Lê Trường, On the index of reducibility in Noetherian modules, Journal of Pure and Applied Algebra, 219 (2015), 4510-4520, SCI(-E), Scopus.
9Nguyễn Tự Cường, Nguyen Tuan Long, Hoàng Lê Trường, Uniform bounds in sequentially generalized Cohen-Macaulay modules, Vietnam Journal of Mathematics, 45 (2015), 343-356, Scopus.
10S. Goto, R. Takahashi, N. Taniguchi, Hoàng Lê Trường, Huneke-Wiegand conjecture of rank one with the change of rings. J. Algebra 422 (2015), 33--52, SCI(-E), Scopus.
11Hoàng Lê Trường, Index of reducibility of parameter ideals and Cohen-Macaulay rings, Journal of Algebra, 415, 2014, pp. 35–49, SCI(-E), Scopus.
12Nguyễn Tự Cường, Hoàng Lê Trường, Shiro Goto, Hillbert coefficients and sequentially Cohen-Macaulay modules, Journal of Pure and Applied Algebra 217 (2013), 470–480, SCI(-E); Scopus.
13Hoàng Lê Trường, Index of reducibility of distinguished parameter ideals and sequentially Cohen-Macaulay modules, Proceedings of the American Mathematical Society, 141 (2013), 1971–1978, SCI(-E); Scopus.
14Nguyễn Tự Cường, Hoàng Lê Trường, Shiro Goto, The equality $I^2 =qI$  in sequentially Cohen-Macaulay rings,  Journal of Algebra, 379 (2013), 50 - 79, SCI(-E); Scopus.
15Nguyễn Tự Cường, Đoàn Trung Cường, Hoàng Lê Trường, On a new invariant of finitely generated modules over local rings, Journal of Algebra and its Applications 9 (2010), 959 -- 976, preprint arXiv:1003.3972, SCI(-E); Scopus.
16Hoàng Lê Trường, S. Goto, S. Kimura, T. T. Phuong, Quasi-socle ideals and Goto numbers of parameters, Journal of Pure and Applied Algebra, 214 (2010), 501 -- 511, SCI(-E); Scopus.
17Nguyễn Tự Cường, Hoàng Lê Trường, Parametric decomposition of parameter ideals and sequentially Cohen-Macaulay modules, Proc. Amer. Math. Soc., 137 (2009), 19-26.
18Nguyễn Tự Cường, Hoàng Lê Trường, Asymptotic behavior of parameter ideals in generalized Cohen-Macaulay modules, J. Algebra 320 (2008),  158 - 168.
Tiền ấn phẩm
1IMH20141201, Nguyen Ngoc Chien, Lê Xuân Thanh, Hoàng Lê Trường, An integer programming formulation for a class of real-life school timetabling problems.