******************* Newton polygon and the number of integer points in some semialgebraic sets

HOẠT ĐỘNG TRONG TUẦN

Newton polygon and the number of integer points in some semialgebraic sets
Người báo cáo: Hà Huy Vui (Viện Toán học)

Thời gian: 9h, Thứ tư 22/11/2017.
Địa điểm: Phòng Semina Tầng 6, Nhà A6, Viện Toán học, 18 Hoàng Quốc Việt, Hà Nội
Tóm tắt: Let $f(x; y)$ be a polynomial in two variables of the form
$$f(x; y) = a_0y^D + a_1(x)y^{D-1} + ldots + a_D(x),$$
where $D$ is the degree of $f$. For $r > 0$, let
$$G^f(r) := {(x; y) in mathbb R^2: |f(x; y)| leq r}.$$
For $K subseteq mathbb R^2$, let $z(G^f(r) cap K)$ denote the number of integer points in the set $G^f(r) cap K$. We show that if $f$ satisfies the so called {it weakly degenerate condition} w.r.t. its Newton polygon $Gamma(f)$ then there exists a neighborhood $Omega_A$ of the set
$$({f=0}cup {frac{delta f}{delta y}=0})cap {|x|>A},$$
vertically thin at infinity, such that
$$z(G^f(r)setminus Omega_A) = r^{frac{1}{d}} ln^{1-k}r; text{ as } r rightarrow infty,$$
where $d$ is the coordinate of the furthest point in the intersection of the so called complete Newton polygon $tilde Gamma(f)$ of $f$ and the diagonal, and $k in{0; 1}$ is the dimension of the face of $tilde Gamma(f)$ containing the point $(d; d)$ in its relative interior.
This is a joint work with Nguyen Thi Thao.

Trở lại

Công bố khoa học mới