Dinh Si Tiep


Doctor

Department of Geometry and Topology
Research interests: Real algebraic ang analytic geometry


Address
Office: Building A5, Room 103
Tel: +84 (0)4 37563474 /103
Email: dstiep AT math.ac.vn

Born in Dalat in 1981

Education and academic degrees:

  • Bachelor/Master: 2003
  • PhD: 2007

 

PUBLICATIONS

List of publications in MathSciNet

 

List of recent publications
1Dinh Si Tiep, Ha Huy Vui, Pham Tien Son, Hölder-Type Global Error Bounds for Non-degenerate Polynomial Systems, Acta Mathematica Vietnamica, 42 (2017), 563–585.
2Dinh Si Tiep, Pham Tien Son, Łojasiewicz inequalities with explicit exponents for smallest singular value functions, Journal of Complexity, 41 (2017), 58-71.
3Dinh Si Tiep, Pham Tien Son, Łojasiewicz-type inequalities with explicit exponents for the largest eigenvalue function of real symmetric polynomial matrices, International Journal of Mathematics, 27 (2016), 27 page.
4Dinh Si Tiep, Krzysztof Kurdyka, Krzysztof Kurdyka, Horizontal Gradient of Polynomial Functions for the Standard Engel Structure on $\mathbb R^4$, Journal of Dynamical and Control Systems, 22(2016), 15-34.
5Dinh Si Tiep, Ha Huy Vui, Pham Tien Son, A Frank–Wolfe type theorem for nondegenerate polynomial programs, Mathematical Programming, 147(2014), 519-538.
6Dinh Si Tiep, Ha Huy Vui, Tiến Sơn Phạm, Nguyễn Thị Tha̓o, Global Łojasiewicz-type inequality for non-degenerate polynomial maps, J. Math. Anal. Appl. 410 (2014), 541–560.
7Dinh Si Tiep, Kurdyka, Krzysztof; Le Gal, Olivier, Łojasiewicz inequality on non-compact domains and singularities at infinity, Internat. J. Math. 24 (2013), 1350079, 8 pp.
8Dinh Si Tiep, Ha Huy Vui, Nguyen Thi Thao, Lojasiewicz inequality for polynomial functions on non-compact domains,  International Journal of Mathematics, 23 (2012), 28p.
9Dinh Si Tiep, K. Kurdyka and P. Orro, Gradient horizontal de fonctions polynomiales, Annales de l'Institut Fourier, 59 (2009),1999-2042.
Preprints
1IMH20161002, Dinh Si Tiep, Krzysztof Kurdyka, Tiến Sơn Phạm, Global mixed Lojasiewicz inequalities and asymptotic critical values.