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Abstract. This paper addresses to Nichtnegativstellensätze for definable functions in o-

minimal structures on (R,+, ·). Namely, let f, g1, . . . , gl : Rn → R be definable Cp-functions

(p ≥ 2) and assume that f is non-negative on S := {x ∈ Rn | g1(x) ≥ 0, . . . , gl(x) ≥ 0}.
Under some natural hypotheses on zeros of f in S, we show that f is expressible in the

form f = φ0 +
∑l

i=1 φigi, where each φi is a sum of squares of definable Cp−2-functions. As

a consequence, we derive global optimality conditions which generalize the Karush–Kuhn–

Tucker optimality conditions for nonlinear optimization.

1. Introduction

A classical Positivstellensätz proved by Krivine [13], and independently by Stengle [22],

states that a polynomial f is non-negative over a basic closed semi-algebraic set

S := {x ∈ Rn | g1(x) ≥ 0, . . . , gl(x) ≥ 0}

if and only if there exist an integer number d ≥ 0 and polynomials ψ, φ in the preordering

generated by g1, . . . , gl over the sums of squares (of polynomials) such that

ψf = φ+ f 2d.

Note that, the denominator ψ cannot be omitted (see [5, 16]).

Schmüdgen [21] showed that if S is compact and f is strictly positive on S, then no

denominators are needed; that is, ψ can be chosen as 1 in the above expression. Moreover,

under some more restrictive hypotheses on the gi, Putinar [19] proved that the polynomial

f can be represented as

f = φ0 +
l∑

i=1

φigi,

where each φi is a sum of squares; that is, f belongs to the quadratic module generated

by the gi’s over the sums of squares, rather than the preordering generated by them. With

additional conditions on zeros of f in S, Scheiderer [20] and Marshall [15] showed that the
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above equation remains true if we replace the assumption “f is strictly positive on S” by “f

is non-negative on S”.

In [2] (see also [1, 3, 8, 9]), Acquistapace, Andradas and Broglia established Positivstel-

lensätze for differentiable functions in o-minimal structures. In particular, they proved that

a function f that is non-negative on a closed set (not necessarily compact)

S = {x ∈ Rn | g1(x) ≥ 0, . . . , gl(x) ≥ 0}

admits a representation of the form

ψ2f = φ2
0 +

l∑
i=1

φ2
i gi.

Again, denominators are necessary. Indeed, for any S with non-empty interior, there are

definable functions that are non-negative over S and do not belong to the preordering gener-

ated by g1, . . . , gl over the sums of squares; that is, the denominator ψ in the above equation

cannot be omitted; for more details, see [2, Remark 3.9].

This paper deals with Nichtnegativstellensätze (local and global) for definable functions of

class Cp (p ≥ 2) in o-minimal structures on (R,+, ·) without any compactness assumption.

Indeed, let f be a definable function, which is non-negative on a basic definable set

S = {x ∈ Rn | g1(x) ≥ 0, . . . , gl(x) ≥ 0}.

We give natural sufficient conditions in terms of the first and second derivatives of f at its

zeros in S, so that f can be represented as

f = φ0 +
l∑

i=1

φigi,

where each φi is a sum of squares. Our proof is elementary, using Morse’s lemma and

partitions of unity.

As a consequence, we obtain global optimality conditions which generalize the Karush–

Kuhn–Tucker optimality conditions for nonlinear optimization.

We finish this section by noting that all the statements and proofs in this paper remain

true if we remove in them the term “definable”. Also, all the statements still hold if we

replace Rn by any real (definable) manifold; however, to lighten the exposition, we do not

pursue this extension here.

The rest of this paper is organized as follows. Section 2 contains some properties of de-

finable sets and functions in o-minimal structures. For the convenience of the reader, local

optimality conditions in nonlinear programming theory are also recalled here. Nichtnega-

tivstellensätze for definable functions (Theorems 3.1 and 3.2) are established in Section 3.

Finally, global optimality conditions (Theorem 4.1) are presented in Section 4.
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2. Preliminaries

In this paper, we deal with the Euclidean space Rn equipped with the usual scalar product

〈·, ·〉 and the corresponding Euclidean norm ‖ · ‖. Let R+ denote the set of positive real

numbers. If f is a function in x, ∇f(x) (resp., ∇2f(x)) denotes the gradient vector (resp.,

Hessian matrix) of f at x.

2.1. O-minimal structures. The notion of o-minimality was developed in the late 1980s

after it was noticed that many proofs of analytic and geometric properties of semi-algebraic

sets and mappings can be carried over verbatim for sub-analytic sets and mappings. The

reader is referred to [6, 23, 24] for more details.

Definition 2.1. An o-minimal structure on (R,+, ·) is a sequence D := (Dn)n∈N such that

for each n ∈ N:

(a) Dn is a Boolean algebra of subsets of Rn.

(b) If X ∈ Dm and Y ∈ Dn, then X × Y ∈ Dm+n.

(c) If X ∈ Dn+1, then π(X) ∈ Dn, where π : Rn+1 → Rn is the projection on the first n

coordinates.

(d) Dn contains all algebraic subsets of Rn.

(e) Each set belonging to D1 is a finite union of points and intervals.

A set belonging to D is said to definable (in that structure). Definable mappings in

structure D are mappings whose graphs are definable sets in D.
Examples of o-minimal structures are

• the semi-algebraic sets (by the Tarski–Seidenberg theorem),

• the globally sub-analytic sets, i.e., the sub-analytic sets of Rn whose (compact) clo-

sures in the real projective space RPn are sub-analytic (using Gabrielov’s complement

theorem).

In this paper, we fix an o-minimal structure on (R,+, ·). The term “definable” means

definable in this structure. We recall some useful facts which we shall need later.

Lemma 2.1. Every definable set has a finite number of connected components.

Proof. See [24, Properties 4.3]. �

Lemma 2.2. Let U be a definable open subset of Rn containing 0 and f : U → R be a

definable Cp-function (p ≥ 1) with f(0) = 0. Then there are definable Cp−1-functions fi : U →
R such that on U we have

f = x1f1 + · · ·+ xnfn.

Proof. See [18, Lemma A.6]. �
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To simplify notation in what follows, the notation “F : (Rn, x∗) → (Rm, y∗)” means that

F is a mapping from a definable open neighbourhood of x∗ ∈ Rn into Rm with F (x∗) = y∗.

Lemma 2.3 (Morse’s lemma). Let U be a definable open subset of Rn containing 0 and

f : U → R be a definable Cp-function (p ≥ 2). If 0 is a non-degenerate critical point of f

(i.e., ∇f(0) = 0 and the Hessian matrix ∇2f(0) of f at 0 is non-singular), then there is a

definable Cp−2-diffeomorphism Φ: (Rn, 0)→ (Rn, 0) such that

f ◦ Φ(y) = f(0)− y21 − · · · − y2` + y2`+1 + · · ·+ y2n,

where ` is the number of negative eigenvalues (multiplicity taken into account) of ∇2f(0).

Proof. Confer [18, Lemma A.7] (see also [11, Section 6.1] and [12, Theorem 2.8.2]). �

Lemma 2.4 (Definable partition of unity). Let {Uk}k=1,...,K be a finite definable open cov-

ering of Rn. Then for any p ≥ 0, there exist definable Cp-functions θk : Rn → [0, 1], k =

1, . . . , K, such that the following statements hold:

(i) supp θk ⊂ Uk, where supp θk denotes the closure of the set {x ∈ Rn | θk(x) 6= 0};
(ii)

∑K
k=1[θk(x)]2 = 1 for all x ∈ Rn.

Proof. It is well-known that (see, for example, [7, Theorem 3.4.2], [11, Theorem 2.1], [23,

Lemma 3.7]), there exists a definable partition of unity {φk}k=1,...,K subordinated to the

covering {Uk}k=1,...,K . Clearly, the functions θk := φk√∑K
k=1 φ

2
k

have the desired properties. �

2.2. Optimality conditions. We give here a short review of optimality conditions in non-

linear programming theory (confer [4, Section 4.3]).

Let f, g1, . . . , gl, h1, . . . , hm : Rn → R be Cp-functions (p ≥ 2) and assume that

S := {x ∈ Rn | g1(x) ≥ 0, . . . , gl(x) ≥ 0, h1(x) = 0, . . . , hm(x) = 0} 6= ∅.

Definition 2.2. The constraint set S is said to be regular at x ∈ S if the gradient vectors

∇gi(x), i ∈ I(x) and ∇hj(x), j = 1, . . . ,m, are linearly independent, where

I(x) := {i ∈ {1, . . . , l} | gi(x) = 0}

is called the set of active constraint indices at x. The set S is called regular if it is regular at

every point x ∈ S.

Let x∗ be a local minimizer of the restriction of f on S and assume that S is regular

at x∗. It is well-known that there exist (unique) Lagrange multipliers λi, i = 1, . . . , l, and

νj, j = 1, . . . ,m, satisfying the Karush–Kuhn–Tucker optimality conditions (KKT optimality

conditions for short)

∇f(x∗)−
l∑

i=1

λi∇gi(x∗)−
m∑
j=1

νj∇hj(x∗) = 0,

λigi(x
∗) = 0, λi ≥ 0, for i = 1, . . . , l.
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Recall that the strict complementarity condition holds at x∗ if it holds that

λ1 + g1(x
∗) > 0, . . . , λl + gl(x

∗) > 0.

Note that strict complementarity is equivalent to λi > 0 for every i ∈ I(x∗).

Let L(x) be the associated Lagrangian function

L(x) := f(x)−
∑

i∈I(x∗)

λigi(x)−
m∑
j=1

νjhj(x),

where I(x∗) is the set of active constraint indices at x∗. Then the second-order necessity

condition holds at x∗, that is

vT∇2L(x∗)v ≥ 0 for all v ∈ Tx∗S.

Here ∇2L(x∗) is the Hessian matrix of L at x∗ and Tx∗S stands for the (generalized) tangent

space of S at x∗:

Tx∗S :=

{
v ∈ Rn : 〈v,∇gi(x∗)〉 = 0, i ∈ I(x∗) and

〈v,∇hj(x∗)〉 = 0, j = 1, . . . ,m

}
.

If it holds that

vT∇2L(x∗)v > 0 for all v ∈ Tx∗S \ {0},

we say the second-order sufficiency condition holds at x∗.

Remark 2.1. (i) Let x∗ ∈ S be a local minimizer of f on S and assume that S is regular at

x∗. According to [12, Lemma 3.2.16], the point x∗ is a (generalized) non-degenerate critical

point of the restriction of f to S if and only if the strict complementarity and second-order

sufficiency conditions hold at x∗.

(ii) Using transversality arguments, one can show that the regularity, strict complemen-

tarity and second order sufficiency conditions hold generically. For related works, see [10,17].

3. Nichtnegativstellensätze for definable functions

In this section we prove two Nichtnegativstellensätze for definable functions. So let

f, g1, . . . , gl, h1, . . . , hm : Rn → R be definable Cp-functions (p ≥ 2) and assume that

S := {x ∈ Rn | g1(x) ≥ 0, . . . , gl(x) ≥ 0, h1(x) = 0, . . . , hm(x) = 0} 6= ∅.

The first main result of the paper reads as follows.

Theorem 3.1 (Local Nichtnegativstellensätz). Assume that f is non-negative on S and let

x∗ ∈ S be a zero of f in S. If S is regular at x∗ and the strict complementarity and second-

order sufficiency conditions hold at x∗, then there are a definable open neighbourhood U of
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x∗ and definable Cp−2-functions φi, ψj : U → R for i = 0, . . . , l and j = 1, . . . ,m, where each

φi is a sum of squares of definable Cp−2-functions, such that on U we have

f = φ0 +
l∑

i=1

φigi +
m∑
j=1

ψjhj.

Proof. (cf. [12, 17]). For convenience, we can generally assume x∗ = 0, up to a shifting.

Recall that I(x∗) := {i ∈ {1, . . . , l} | gi(x∗) = 0} is the index set of inequality constraints

that are active at x∗. By renumbering, we may assume that I(x∗) := {1, . . . , k}. Since S is

regular at 0, the gradient vectors

∇g1(0), . . . ,∇gk(0),∇h1(0), . . . ,∇hm(0)

are linearly independent. Let d := n−m− k. Up to a linear coordinate transformation, we

can further assume that

∇g1(0) = ed+1, . . . , ∇gk(0) = ed+k,

∇h1(0) = ed+k+1, . . . , ∇hm(0) = en,

where e1, . . . , en are the canonical basis vectors in Rn. Note that the space Tx∗S is determined

by the vectors e1, . . . , ed.

Define the definable Cp-mapping Φ: Rn −→ Rn, x 7→ Φ(x), by

Φ(x) := (x1, . . . , xd, g1(x), . . . , gk(x), h1(x), . . . , hm(x)).

Clearly, Φ(0) = 0 and the Jacobian matrix DΦ(0) of Φ at 0 is the identity matrix In. Thus,

by the inverse function theorem, Φ is a local Cp-diffeomorphism in some neighbourhood of

0 with the inverse

Φ−1 : (Rn, 0)→ (Rn, 0), t 7→ x := Φ−1(t).

So, t := (t1, . . . , tn) can serve as a coordinate system for Rn around 0. In the t-coordinate

system and in a neighborhood of 0, the set S defined by

td+1 ≥ 0, . . . , td+k ≥ 0, td+k+1 = 0, . . . , tn = 0.

Let λi and νj be the Lagrange multipliers with respect to the minimizer x∗. Define the

Lagrangian function

L(x) := f(x)−
∑

i∈I(x∗)

λigi(x)−
m∑
j=1

νjhj(x).

Note that ∇L(0) = 0. In the t-coordinate system, define the functions

F (t) := f(Φ−1(t)),

L̂(t) := L(Φ−1(t)) = F (t)−
d+k∑
r=d+1

λr−dtr −
n∑

r=d+k+1

νr−d−ktr.
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Clearly,

∇L̂(0) = ∇L(0)DΦ−1(0) = ∇L(0) = 0.

This implies that

∂F

∂tr
(0) =


0 if r = 1, . . . , d,

λr−d if r = d+ 1, . . . , d+ k,

νr−d−k if r = d+ k + 1, . . . , n.

Furthermore, for (t1, . . . , td) near 0 ∈ Rd, it holds that

F (t1, . . . , td, 0, . . . , 0) = L̂(t1, . . . , td, 0, . . . , 0),

= L(Φ−1(t1, . . . , td, 0, . . . , 0)).

Let x(t) := Φ−1(t) = (Φ−11 (t), . . . ,Φ−1n (t)). For all i, j, we have

∂2L̂(t)

∂ti∂tj
=

∑
1≤r,s≤n

∂2L(x(t))

∂xr∂xs
.
∂Φ−1r (t)

∂ti
.
∂Φ−1s (t)

∂tj
+
∑

1≤r≤n

∂L(x(t))

∂xr
.
∂2Φ−1r (t)

∂ti∂tj
.

Note that ∇L(0) = 0 and x(0) = Φ−1(0) = 0. Hence

∂2L̂

∂ti∂tj
(0) =

∑
1≤r,s≤n

∂2L

∂xr∂xs
(0).

∂Φ−1r
∂ti

(0).
∂Φ−1s
∂tj

(0).

On the other hand, we have DΦ(0) = DΦ−1(0) = In-the identity matrix. Therefore for all

i, j = 1, . . . , d,

∂2F

∂ti∂tj


t=0

=
∂2L̂

∂ti∂tj


t=0

=
∂2L

∂xi∂xj


x=0

.

Since the vector space Tx∗S is defined by the vectors e1, . . . , ed, the second-order sufficiency

condition implies that the sub-Hessian(
∂2L

∂xi∂xj
(0)

)
1≤i,j≤d

is positive definite.

Define the definable Cp-function A : (Rd, 0)→ (R, 0), by

A(t1, . . . , td) := F (t1, . . . , td, 0, . . . , 0).

Then A(0) = 0,∇A(0) = 0 and the Hessian matrix ∇2A(0) is positive define. On the

other hand, by Lemma 2.2, there exist definable Cp−1-functions Br : (Rd+k, 0) → (R, 0) for

r = 1, . . . , k, and Cr : (Rn, 0)→ (R, 0) for r = 1, . . . ,m such that

F (t1, . . . , td+k, 0, . . . , 0) = F (t1, . . . , td, 0, . . . , 0) +
d+k∑
r=d+1

trBr−d(t1, . . . , td+k),

F (t1, . . . , tn) = F (t1, . . . , td+k, 0, . . . , 0) +
n∑

r=d+k+1

trCr−d−k(t1, . . . , tn).
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Then for all t := (t1, . . . , tn) ∈ Rn near 0, we have

F (t1, . . . , tn) = A(t1, . . . , td) +
d+k∑
r=d+1

trBr−d(t1, . . . , td+k) +
n∑

r=d+k+1

trCr−d−k(t1, . . . , tn).

In view of Lemma 2.3 (applied to the function A), there is a definable Cp−2-diffeomorphism

θ : (Rd, 0)→ (Rd, 0), (t1, . . . , td) 7→ (z1, . . . , zd),

such that

A ◦ θ−1(z1, . . . , zd) =
d∑
r=1

z2r .

We extend θ to a definable Cp−2-diffeomorphism

Θ: (Rn, 0)→ (Rn, 0), t 7→ z := Θ(t),

by putting

Θ(t1, . . . , tn) := (θ(t1, . . . , td), td+1, . . . , tn).

Next we put

B̃i(z1, . . . , zd+k) := Bi(θ
−1(z1, . . . , zd), zd+1, . . . , zd+k), i = 1, . . . , k,

C̃j(z1, . . . , zn) := Cj(θ
−1(z1, . . . , zd), zd+1, . . . , zn), j = 1, . . . ,m.

Clearly, B̃i and C̃j are definable Cp−2-functions, B̃i(0) = Bi(0) = λi > 0. In particular, in

some neighbourhood of 0 ∈ Rd+k, the functions B̃i are squares of definable Cp−1-functions.

For all z := (z1, . . . , zn) ∈ Rn near 0, we have

f ◦ (Θ ◦ Φ)−1(z) = F ◦Θ−1(z)

=
d∑
r=1

z2r +
d+k∑
r=d+1

zrB̃r−d(z1, . . . , zd+k) +
n∑

r=d+k+1

zrC̃r−d−k(z).

Let x := (Θ ◦ Φ)−1(z); or equivalently,

z = (θ(x1, . . . , xd), g1(x), . . . , gk(x), h1(x), . . . , hm(x)).

Then it is easy to see that the functions

φ0(x) := ‖θ(x1, . . . , xd)‖2,

φi(x) := B̃i

(
θ(x1, . . . , xd), g1(x), . . . , gk(x)), i = 1, . . . , k,

φi(x) := 0, i = k + 1, . . . , l,

ψj(x) := C̃j
(
θ(x1, . . . , xd), g1(x), . . . , gk(x), h1(x), . . . , hm(x)

)
, j = 1, . . . ,m,

have the desired properties. �

We are now ready to prove our second main result.
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Theorem 3.2 (Global Nichtnegativstellensätz). Assume that f is nonnegative on S. If the

regularity, strict complementarity and second-order sufficiency conditions hold at every zeros

of the restriction of f on S, then there are definable Cp−2-functions φi, ψj : Rn → R for

i = 0, . . . , l and j = 1, . . . ,m, where each φi is a sum of squares of definable Cp−2-functions,

such that

f = φ0 +
l∑

i=1

φigi +
m∑
j=1

ψjhj.

Proof. Our assumptions yield that the definable set f−1(0)∩ S is discrete (see, for example,

[12, Corollary 3.2.30]). This, together with Lemma 2.1, implies that f−1(0)∩S is a finite set,

say {x∗1, . . . , x∗N}. In view of Theorem 3.1, for each k = 1, . . . , N, there exist a definable open

neighbourhood Uk of x∗k and definable Cp−2-functions φk,i, ψk,j : Uk → R for i = 0, 1, . . . , l

and j = 1, . . . ,m, where each φk,i is a sum of squares of definable Cp−2-functions, such that

on Uk we have

f = φk,0 +
l∑

i=1

φk,igi +
m∑
j=1

ψk,jhj.

Since f is positive on the set S \ {x∗1, . . . , x∗N}, we can find a (definable) open set UN+1

containing S \
⋃N
k=1 Uk such that f is positive on UN+1. On the set UN+1, define the definable

Cp-functions φk,i and ψk,j by

φN+1,0 := f,

φN+1,i := 0 for i = 1, . . . , l,

ψN+1,j := 0 for j = 1, . . . ,m.

For k = N + 2, . . . , N + l + 1, on the definable open set Uk := {x ∈ Rn | gk−N−1(x) < 0},
define the definable Cp-functions φk,i and ψk,j by

φk,0 :=

(
f + 1

2

)2

,

φk,i :=

(
f − 1

2

)2

· 1

l(−gi)
for i = 1, . . . , l,

ψk,j := 0 for j = 1, . . . ,m.

For k = N+ l+2, . . . , N+ l+m+1, on the definable open set Uk := {x ∈ Rn | hk−N−l−1(x) 6=
0}, define the definable Cp-functions φk,i and ψk,j by

φk,0 := 0 for i = 0, . . . , l,

ψk,j :=
f

mhj
for j = 1, . . . ,m.
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By definition, on the set Uk, k = N + 1, . . . , N + l +m+ 1, we have

f = φk,0 +
l∑

i=1

φk,igi +
m∑
j=1

ψk,jhj.

Since {Uk}k=1,...,N+l+m+1 is a the family of definable open sets covering Rn, it follows from

Lemma 2.4 that there exist definable Cp-functions θk : Rn → [0, 1], k = 1, . . . , N + l+m+ 1,

such that supp θk ⊂ Uk and

N+l+m+1∑
k=1

[
θk(x)

]2
= 1 for all x ∈ Rn.

For k = 1, . . . , N + l+m+ 1, i = 0, 1, . . . , l, and j = 1, . . . ,m, the functions θ2kφk,i and θ2kψk,j

extend by 0 to (definable) Cp−2-functions over Rn. By construction, the functions θ2kφk,i are

sums of squares of definable Cp−2-functions.

Finally, on Rn we have

f = 1 · f =

(
N+l+m+1∑

k=1

θ2k

)
f =

N+l+m+1∑
k=1

θ2kf

=
N+l+m+1∑

k=1

(
θ2kφk,0 +

l∑
i=1

θ2kφk,igi +
m∑
j=1

θ2kψk,jhj

)

=
N+l+m+1∑

k=1

θ2kφk,0 +
l∑

i=1

(
N+l+m+1∑

k=1

θ2kφk,i

)
gi +

m∑
j=1

(
N+l+m+1∑

k=1

θ2kψk,j

)
hj.

The proof is complete. �

4. Global optimality conditions

In this section, we derive global optimality conditions which generalize the KKT optimality

conditions for nonlinear optimization.

Let f, g1, . . . , gl, h1, . . . , hm : Rn → R be definable Cp-functions (p ≥ 3) and assume that

S := {x ∈ Rn | g1(x) ≥ 0, . . . , gl(x) ≥ 0, h1(x) = 0, . . . , hm(x) = 0} 6= ∅.

Let (x∗, λ, ν) ∈ S×Rl
+×Rm be a vector satisfying the KKT optimality conditions associated

with the problem minx∈S f(x), that is

∇f(x∗)−
l∑

i=1

λi∇gi(x∗)−
m∑
j=1

νj∇hj(x∗) = 0,

λigi(x
∗) = 0, λi ≥ 0, for i = 1, . . . , l.

It follows that x∗ a stationary point of the Lagrangian function

L(x) := f(x)−
l∑

i=1

λigi(x)−
m∑
j=1

νjhj(x).
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However, in general, x∗ is not a global minimizer of L (and may not even be a local mini-

mizer).

On the other hand, we have the following global optimality conditions, which is inspired

by the work of Lasserre [14, Chapter 7] (see also [10, Subsection 7.4.5]).

Theorem 4.1. Assume that f∗ := minx∈S f(x) > −∞. If the regularity, strict complemen-

tarity and second-order sufficiency conditions hold at every minimizers of the restriction of

f on S, there are definable Cp−2-functions φi, ψj : Rn → R for i = 0, . . . , l and j = 1, . . . ,m,

where each φi is a sum of squares of definable Cp−2-functions, such that

f − f∗ = φ0 +
l∑

i=1

φigi +
m∑
j=1

ψjhj. (1)

Let x∗ ∈ S be a global minimizer of f on S. The following statements hold:

(i) φ0(x
∗) = 0, and φi(x

∗)gi(x
∗) = 0 and φi(x

∗) ≥ 0 for all i = 1, . . . , l.

(ii) ∇f(x∗)−
∑l

i=1 φi(x
∗)∇gi(x∗)−

∑m
j=1 ψj(x

∗)∇hj(x∗) = 0.

(iii) x∗ is a global minimizer of the (generalized) Lagrangian function

L (x) := f(x)− f∗ −
l∑

i=1

φi(x)gi(x)−
m∑
j=1

ψj(x)hj(x).

Proof. The existence of functions φi and ψj for which the equality (1) holds follows immedi-

ately from Theorem 3.2.

(i) From (1) and the fact that x∗ is a global minimizer of f on S, we get

0 = f(x∗)− f∗ = φ0(x
∗) +

l∑
i=1

φi(x
∗)gi(x

∗) +
m∑
j=1

ψj(x
∗)hj(x

∗),

which in turn implies (i) because gi(x
∗) ≥ 0 for i = 1, . . . , l, hj(x

∗) = 0 for j = 1, . . . ,m, and

the functions φi are all sums of squares of definable Cp−2-functions, hence nonnegative.

(ii) Differentiating (1), using (i) and the fact that the functions φi are sums of squares of

definable Cp−2-functions yield (ii).

(iii) Since φ0 is a sum of squares of definable Cp−2-functions, we have for all x ∈ Rn,

L (x) = f(x)− f∗ −
l∑

i=1

φi(x)gi(x)−
m∑
j=1

ψj(x)hj(x) = φ0(x) ≥ 0.

Note that L (x∗) = φ0(x
∗) = 0. Therefore, x∗ is a global minimizer of L . �

Remark 4.1. Theorem 4.1 implies the following facts.

(i) The equality (1) can be interpreted as a global optimality condition.

(ii) The function L (x) := f(x) − f∗ −
∑l

i=1 φi(x)gi(x) −
∑m

j=1 ψj(x)hj(x) is a general-

ized Lagrangian function, with generalized Lagrange (definable functions) multipliers

((φi), (ψj)) instead of scalar multipliers (λ, ν) ∈ Rl
+ × Rm. It is a sum of squares of
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definable Cp−2-functions (hence nonnegative on Rn), vanishes at every global min-

imizer x∗ ∈ S, and so x∗ is also a global minimizer of the generalized Lagrangian

function.

(iii) The generalized Lagrange multipliers ((φi), (ψj)) provide a certificate of global opti-

mality for x∗ ∈ S in the nonconvex case exactly as the Lagrange multipliers (λ, ν) ∈
Rl

+ × Rm provide a certificate in the convex case.

We should also mention that in the KKT optimality conditions, only the constraints

gi(x) ≥ 0 that are active at x∗ have a possibly nontrivial associated Lagrange (scalar)

multiplier λi. Hence the nonactive constraints do not appear in the Lagrangian function L

defined above. In contrast, in the global optimality condition (1), every constraint gi(x) ≥
0 has a possibly nontrivial Lagrange multiplier φi(x). But if gi(x

∗) > 0 then necessarily

φi(x
∗) = 0 = λi, as in the KKT optimality conditions.
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