Người báo cáo: TS Dương Trọng Luyện (Đại học Hoa Lư)
Thời gian: 9h30 ngày 05/07/2022
Địa điểm: 301, A5, Viện Toán học
Tóm tắt: In this talk, we study existence and non-existence of weak solutions for semilinear bi$-Delta_{gamma}-$Laplace equation  begin{gather*}
Delta^2_gamma u=f(x,u) text{ in }Omega, quad
u= partial_ u u =0 ; text{ on }partialOmega,
 end{gather*}
where $Omega$ is a bounded domain with smooth boundary in $mathbb{R}^N (N ge 2), f(x,xi) $ is a Carath'eodory functions and $ Delta_{gamma}$ is the subelliptic operator of the type $$
Delta_gamma: =sumlimits_{j=1}^{N}partial_{x_j} left(gamma_j^2 partial_{x_j} right), quad partial_{x_j}: =frac{partial }{partial x_{j}}, gamma = (gamma_1, gamma_2, ..., gamma_N),quad Delta^2_gamma: =Delta_gamma(Delta_gamma). $$ |