Ta Thi Hoai An


Associate Professor, Doctor of Science

Department of Number Theory
Research interests: Algebraic Number Theory, Nevanlinna Theory, Algebraic geometry


Address
Office: Building A5, Room 305
Tel: +84 24 37563474 (ext. 305)
Email: tthan AT math.ac.vn
Personal homepage: http://vie.math.ac.vn/~tthan/

Education and academic degrees:

  • 1993: Bachelor/Master
  • 2001: PhD
  • 2014: Doctor of Science
  • 2009: Associate Professor


Research areas: Algebraic Number Theory, Nevanlinna Theory, Algebraic geometry

PUBLICATIONS

List of publications in MathSciNet

 

List of recent publications
1Alain Escassut, Ta Thi Hoai An, Classical p-adic Nevanlinna theory and Nevalinna theory out of a hole. [Corrected title: Classical p-adic Nevanlinna theory and Nevanlinna theory out of a hole] Advances in ultrametric analysis, 161–203, Contemp. Math., 704, Amer. Math. Soc., Providence, RI, 2018.
2Ta Thi Hoai An, Nguyen Viet Phuong, Uniqueness theorems for differential polynomials sharing a small function. Computational Methods and Function Theory, 17 (2017), 613–634.
3Alain Escassut, Ta Thi Hoai An, New applications of the $p$-adic Nevanlinna theory p-Adic Numbers Ultrametric, p-Adic Numbers, Ultrametric Analysis and Applications, 10 (2018), 12–31.
4Alain Escassut, Ta Thi Hoai An, P-Adic Nevanlinna Theory Outside of a Hole, Vietnam Journal of Mathematics, 45 (2017), 681–694.
5Thomas Hales, Mark Adams, Gertrud Bauer, Tat Dat Dang, John Harrison, Hoang Le Truong, Cezary Kaliszyk, Victor Magron, Sean Mclaughlin, Nguyen Tat Thang, Quang Truong Nguyen, Tobias Nipkow, Steven Obua, Joseph Pleso, Jason Rute, Alexey Solovyev, Ta Thi Hoai An, Tran Nam Trung, Thi Diep Trieu, Josef Urban, Ky Vu, Roland Zumkeller, A formal proof of the Kepler onjecture, Forum of Mathematics, Pi, 5 (2017) 29 pages.
6Ta Thi Hoai An, Cherry William, Wang Julie Tzu-Yueh, Supplement and Erratum to "Algebraic degeneracy of non-Archimedean analytic maps'' [Indagationes Mathematicae (N.S.) 19 (2008) 481–492] , Indagationes Mathematicae (N.S.) 26 (2015), 329–336.
7Ta Thi Hoai An, Nguyen Thi Ngoc Diep, Genus one factors of curves defined by separated variable polynomials, Journal of Number Theory, 133 (2013), 2616-2634.
8Ta Thi Hoai An, Hsiu-Lien Huang and J. T.-Y. Wang, Generalized B\"uchi's  problem for algebraic functions and meromorphic functions,  Math. Z. 273 (2013), 95-122.
9Ta Thi Hoai An, Nguyen Thi Ngoc Diep, Heights of Function Field Points on Curves Given by Equations with Separated Variables,  International Journal of Mathematics,23 (2012).
10Ta Thi Hoai An, Unique range sets for meromorphic functions constructed without an injectivity hypothesis. Taiwanese J. Math. 15 (2011), 697–709.
11Ta Thi Hoai An, J. T.-Y. Wang, Hensley's problem for complex and non-Archimedean meromorphic functions, Journal of Mathematical Analysis and Applications  381(2011), 661 -- 677.
12Ta Thi Hoai An, A. Levin and J. T.-Y. Wang, A $p$-adic Nevanlinna-Diophantine correspondence, Acta Arithmetica  146 (2011), 379 -- 397.
13Ta Thi Hoai An, Unique range sets for meromorphic functions constructed without an injectivity hypothesis, Taiwanese Journal of Mathematics, 15 (2011), 697 -- 709.
14Ta Thi Hoai An, Julie Tzu-Yueh Wang, A note on uniqueness polynomials of entire functions, Vietnam J. Math. 37 (2009), 225-236.
15Ta Thi Hoai An, Ha Tran Phuong, On an explicit estimate on multiplicity truncation in the second main theorem for holomorphic curves encountering hypersurfaces in general position in projective space, Houston Journal of Mathematics, 35 (2009), 775-786.
16Ha Huy Khoai, Ta Thi Hoai An, A survey on uniqueness polynomials and unique range sets. In: Some topics on value distribution and differentiability in complex and p-adic analysis.,143-163; Math. Monogr. Ser., 11, Sci. Press Beijing, 20008.
17Ta Thi Hoai An, Ha Huy Khoai, Uniqueness polynomials and unique range sets. Some topics on value distribution and differentiability in complex and p-adic analysis, 148–163, Math. Monogr. Ser., 11, Sci. Press Beijing, Beijing, 2008.
18Ta Thi Hoai An, A. Escassut, Meromorphic solutions of equations over non-Archimedean fields, Ramanujan J. 15 (2008),  N0 3, 415 - 433.
19Ta Thi Hoai An, J. T.-Y. Wang and P.-M. Wong, Non-Archimedean analytic curves in the complements of hypersurface divisors. J. Number Theory 128 (2008), 2275 - 2281.
20Ta Thi Hoai An, W. Cherry and J.T.-Y. Wang, Algebraic degeneracy of non-archimedean analytic maps, Indagationes Math. 19 (2008), 481-492, preprint arXiv:0708.0401.
21Ta Thi Hoai An, J. T.-Y. Wang, Unique range sets and uniqueness polynomials for algebraic curves, Trans. Amer. Math. Soc. 359 (2007),  937 - 964(electronic).
22Ta Thi Hoai An, A defect relation for non-Archimedean analytic curves in arbitrary projective varieties, Proc. Amer. Math. Soc. 135 (2007),  1255 - 1261.
23Ta Thi Hoai An, Julie Tzu-Yueh Wang, Pit-Mann Wong, Unique range sets and uniqueness polynomials in positive characteristic. II. Acta Arith. 116 (2005), N0 2, 115 - 143.
24Ta Thi Hoai An, J. T.-Y. Wang, Unique range sets for non-Archimedean entire functions in positive characteristic fields. In: Ultrametric functional analysis, 323 - 333, Contemp. Math. 384, Amer. Math. Soc., Providence, RI, 2005.
25Ta Thi Hoai An, J. T.-Y. Wang and P.-M. Wong, Strong uniqueness polynomials: the complex case, Complex Var. Theory Appl. 49 (2004), 25 - 54.
26Ta Thi Hoai An, Julie Tzu-Yueh Wang, Pit-Mann Wong, Unique range sets and uniqueness polynomials in positive characteristic. Acta Arith. 109 (2003), 259 - 280
27Ha Huy Khoai, Ta Thi Hoai An, Uniqueness problem with truncated multiplicities for meromorphic functions on a non-Archimedean field, Southeast Asian Bull. Math. 27 (2003), 477 - 486.
28Ta Thi Hoai An, J. T.-Y. Wang, Uniqueness polynomials for complex meromorphic functions. Internat, J. Math. 13 (2002), 1095 - 1115.
29Ta Thi Hoai An, A new class of unique range sets for meromorphic functions on $\Bbb C$. Dedicated to the memory of Le Van Thiem (Hanoi, 1998), Acta Math. Vietnam. 27 (2002),  251 - 256.
30Ha Huy Khoai, Ta Thi Hoai An, On uniqueness polynomials and bi-URs for $p$-adic meromorphic functions, J. Number Theory 87 (2001),  N0 2, 211 - 221.