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Abstract. In this page, we resee about some properties of the polylog-
arithm functions. To do those works, we base on the results in [5] and
relate them to Nevallinna theory for the meromorphism functions. And
then we present some other properties of the class of these functions.
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1. Introduction

The polylogarithms are one of the interesting subjects of mathematics and
physics. These functions were appeared within the functional expansions
(which were common in physics as well as in engineering [21]) to represent
the nonlinear dynamical systems in quantum electrodynanics and and have
been developped by Tomonaga, Schwinger and Feynman [8]. They appeared
then in the singular expansion of the solutions and their successive (ordinary
or functional) derivations [12] of nonlinear differential equations with three
singularities [1, 6, 17, 18] and then they also appeared in the asymptotic
expansion of the Taylor coefficients (if it exists). The main challenge of these
expansions lies in the divergences and leads to problems of regularization and
renormalization which can be solved by combinatorial technics [3, 7, 6, 11,
12, 17, 18, 22]. For any s = (s1, . . . , sr) ∈ Cr, r ∈ N+ and z ∈ C such that
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|z| < 1, the polylogarithm function 1 at s = (s1, . . . , sr) is well-defined by

Lis1,...,sr(z) :=
∑

n1>...>nr>0

zn1

ns11 . . . nsrr
. (1.1)

For example, if r = 1 then for each fixed complex s1, the series in (1.1)
defines an analytic function of z on the open disc |z| < 1. This series also
converges on the disc |z| < 1, provided that <(s1) > 1. In the special case,

z = 1, we obtain the Riemann zeta value ζ(s1) =
∞∑
n=1

1

ns1
at s1. For other

values of z, the value of polylogarithms is defined by analytic continuation.
In general case, in the same way, for any r ∈ N∗, the polylogarithms are

extended as the analytic functions on C by the analytic continuation. Then

the Maclaurin’s expansion of
Lis1,...,sr(z)

1− z
is given by

Lis1,...,sr(z)

1− z
=
∑
N≥0

Hs1,...,sr(N) zN , (1.2)

where the coefficients Hs1,...,sr : N −→ Q are the arithmetic functions which
are called the harmonic sums (at s = (s1, . . . , sr)). Moreover, the harmonic
sum at s = (s1, . . . , sr) can be expressed as follows

Hs1,...,sr(N) :=
∑

N≥n1>...>nr>0

1

ns11 . . . nsrr
, N ∈ N. (1.3)

Setting now

Hr = {(s1, . . . , sr) ∈ Cr|∀m = 1, . . . , r,<(s1) + . . .+ <(sm) > m}.
From the analytic continuation of polyzetas [14, 24]2, for any (s1, . . . , sr) ∈
Hr after a theorem by Abel, one obtains the polyzeta value as follows

lim
z→1

Lis1,...,sr(z) = lim
N→∞

Hs1,...,sr(N) = ζ(s1, . . . , sr).

On the other hand, being based on Picards and Borels theorems, in 1925,
Nevanlinna [23] published his paper and evolved a theory entitled with his

1The notation Li2(z) was introduced in Lewin (1981) for a function discussed in Euler
(1768) and called the dilogarithm in Hill (1828). Other notations and names for Li2(z)
include S2(x) (Kölbig et al. (1970)), Spence function Sp(z) (Hooft and Veltman (1979)),
and L2(z) (Maximon (2003)). Moreover, for any s ∈ N∗, the notation φ(z, s) was used for
Lis(z) in Truesdell (1945) for a series treated in Jonquire (1889), hence the alternative
name Jonquires function.

2Here, the polyzeta value at (s1, . . . , sr) ∈ Cr means the series

ζ(s1, . . . , sr) :=
∑

n1>...>nr>0

1

ns11 . . . nsrr
. (1.4)
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name3. After, this theory has had many applications to the analyticity,
growth, existence and unicity properties of meromorphic solutions to differ-
ential or functional equations.

In this page, basing on some properties of the meromorphic functions
and the Nevallinna theory which was presented in [9], we would like to
present another view on the polylogarithms to relook the properties of the
polylogarithms which are understood as the meromorphism solutions of a
non-linearly differential equation. Moreover, by this way, we present also
some new proprieties about the polylogarithms.

2. Power series and Polylogarithms

In this page, we will denote by K an algebraically closed field of char-
acteristic 0, complete with respect to an ultrametric absolute value ‖ .‖.

We will also denote by

d(α,R) the disk {x ∈ K| |x− a| ≤ R},
d(α,R−) the disk {x ∈ K| |x− a| < R},
C(α,R) the disk {x ∈ K| |x− a| = R},

for any α ∈ K, R ∈ R∗+.
Moreover, we call the absolute value of K the set {|x| |x ∈ K}, namely by
|K|.

Given a closed bounded subset D of K. We denote by D the smallest
closed disk containing D. Moreover, we showed that D\D admits a partition
of the form {d(ai, r

−
i )}i∈I where the disk d(ai, r

−
i ) is maximal (see in [9, 10]).

The such disks d(ai, r
−
i ), i ∈ I lying in the partition of D \D are called the

holes of D.
We denote now R(D) by K−algebra of rational functions without poles

in closed bounded subset D of K provided with the norm of uniform con-
vergence on D. Moreover, we calls H(D) by the completion of R(D) with
respect to that norm4.

Let’s now take D to be a closed unbounded subset of K. We call Rb(D)
the algebra of bounded rational functions having no pole in D, provide
with the norm of uniform convergence on D. The completion of Rb(D) is a
K−Banach algebra Hb(D) again. The element of Hb(D) is called bounded
analytic elements in D. In particular, we denote by H0(D) the K−Banach
algebra of elements f such that lim

|x|→+∞, x∈D
f(x) = 0.

Recall that an analytic element in d(0, R−) is a convergent power series
in d(0, R−). Moreover, a convergent power series in d(0, R−) doesn’t sure

3In fact, in 1925, Nevanlinna studied the value distribution of meromorphic functions
on complex plan C.

4In fact, we can be prove that H(D) is a K− Banach algebra.
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to be an analytic element in d(0, R−) . However, an element in d(0, R) is
analytic if only if it is a convergent power series in d(0, R).

Nextly, a power series
+∞∑
n=0

anx
n is called entire function on K if the radius

of convergence of
+∞∑
n=0

anx
n is ∞. The set of entire function on K is denoted

by A(K).
Given X to be a nonempty set and F is a set of subsets of X. The set F

is a filter on X if only if F satisfies 3 following conditions:

(i) ∅ /∈ F .
(ii) For any n ∈ N, if U1, . . . , Un are the elements of F then

⋂
i∈I
Ui ∈ F .

(iii) If U ∈ F and U ⊂ A ⊂ X then A ∈ F .

Moreover, a filter F is called to be secant with a subset B of E if the family
of set {H ∩B| H ∈ F} is a filter on B.

Let a ∈ K and let r′, r” ∈ R be such that 0 < r′ < r”. We set

Γ(a, r′, r”) = {x ∈ K|r′ < |x− a| < r”} ,
∆(a, r′, r”) = {x ∈ K|r′ ≤ |x− a| ≤ r”} . (2.1)

For any a ∈ K and r ∈ R+, we denote the circular filter of center a, of
diameter r which admits for basis {Γ(b, r′, r”)| b ∈ d(a, r); r′ < r < r”}.
In special case, K isn’t spherically complete, each decreasing family of disks
(Dn)n∈N∗ such that

⋂
n∈N∗

Dn = ∅ also defines a filter which is called the cir-

cular filter of basis (Dn). Finally, for any a ∈ K, the filter of neighborhoods
of a is called circular filter of neighborhoods of a and such a cicular filter is
said to be punctual.

Thanks for the works of B. Guennebaud and G. Garandel [15] which
proved the important theorem as follows:

Theorem 1 ([15]). Each circular filter F on K defines a multiplicative semi-
norm on K[x] which is a norm iff it is not punctual and the semi-norm is
continuous with respect to the norm ‖ .‖D iff the filter is secant with D.
Each circular filter F secant with D defines on (R(D), ‖ . |D) a continu-
ous multiplicative semi-norm ϕF that has continuation to H(D) and the
mapping associating to each circular filter secant with D, its multiplicative
semi-norm ϕF is a bijection from the set of circular filters secant with D
onto the set of continuous multiplicative semi-norms on H(D) and on R(D).

Mult(H(D), ‖ .‖D) is compact with respect to the topology of pointwise
convergence.
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Let R ∈ R∗+ and let f ∈ A(d(a,R−)). Given r ∈]0, R[, f ∈ H(d(a, r)),
hence for any circular filter F secant with d(a, r), ϕF(f) is defined. More-
over,

(i) If s < R then we choice b ∈ d(a,R).
(ii) If F is the circular filter of center b and diameter s, we put

ϕb,s(f) = ϕC(f) = ‖ f‖d(a,r−).
In special case, a = 0, we put

|f |(s) = lim
F
|f(x)| = lim

|x|→s,|x|6=r
|f(x)|.

Noting that for any r ∈ N∗ and (s1, . . . , sr) ∈ Cr, the polylogarithm at
(s1, . . . , sr), namely by Lis1,...,sr(z), is defined by

Lis1,...,sr(z) =
∑

n1>...>nr>0

zn1

ns11 . . . nsrr
(2.2)

for any |z| < 1. Moreover, for any |z| < 1, the Maclaurin’s expansion of
Lis1,...,sr(z)

1− z
is as follows:

Lis1,...,sr(z)

1− z
=
∑
N≥0

Hs1,...,sr(N)zN (2.3)

where the coefficient Hs1,...,sr(N) is called the harmonic sum at (s1, . . . , sr) ∈
Cr and is well-defined by

Hs1,...,sr(0) = 0,

Hs1,...,sr(N) =
∑

N≥n1>...>nr>0

1

ns11 . . . nsrr
, for any N > 0. (2.4)

Then we get

|Lis1,...,sr |(z) = lim
|x|→z 6=1

|Lis1,...,sr(x)|. (2.5)

This implies that, for any q ∈ N and s1, . . . , sr ∈ Z, then

lim
z→+∞

|Lis1,...,sr |(z)

zq
= lim
|x|→+∞

|Lis1,...,sr(x)|
xq

=∞. (2.6)

Recall that

Lemma 1 ([9, 10]). For any f ∈ A(K), the following statements are equiva-
lent:

(i) lim
r→+∞

|f |(r)
rq

= +∞, ∀q ∈ N .

(ii) There doesn’t exist q ∈ N such that lim
r→∞

|f |(r)
rq

= 0.
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(iii) f is not a polynomial.

Then, as an immediate consequence of Lemma 1, we have

Proposition 1. For any r ∈ N∗ and s1, . . . , sr ∈ C, we have

(i) There doesn’t exist q ∈ N such that lim
r→+∞

|Lis1,...,sr |(r)
rq

= 0.

(ii) Lis1,...,sr(z) isn’t a polynomial.

We can check some special cases for Proposition (1) as follows:

For any s1, . . . , sr ∈ N+, the polylogarithm at (s1, . . . , sr) is not a
polynomial. In fact, in this case, the polylogarithm can be presented
like an algebraic combinatorial of {logn(z)}n∈N+ .
For any s1, . . . , sr ∈ (Z\N+), the polylogarithm at (s1, . . . , sr) is not
also a polynomial with z but it is polynomial with rational coeffi-

cients on
1

1− z
.

On the other hand, each of polylogarithms is an analytic function on
d(0, 1).

Proposition 2. For any r ∈ R such that 0 < r < 1 and s1, . . . , sk ∈ Z, we
have

lim
N→+∞

|Hs1,...sk(N)rN | = 0.

Moreover, we also have

‖Lis1,...,sr ‖d((0,r)) = max
n∈N
| 1

ns1
Hs2,...,sr(n)|rn = ϕF(Lis1,...,sr(z)) (2.7)

where F is a circular filter secant with d(0, r)).

Proof. To prove this Proposition, we shall utilize the following results:

Lemma 2 ([9, 10]). Let r ∈ R∗+ and let D = d(0, r). The set H(D) is the

set of power series f(x) =
∞∑
n=0

anx
n such that lim

|n|∞→∞
|an|rn = 0 and

‖f‖D = max
n∈N
|an|rn = ϕF(f). (2.8)

In particular, the norms ‖ .‖D and ‖ .‖C(0,r) are multiplicative and coincide
on H(C(0, r)).

We now return to the proof of Proposition 2. Firtly, we will prove that

lim
N→+∞

|Hs1,...sk(N)rN | = 0

for any r ∈ R such that 0 < r < 1 and s1, . . . , sk ∈ N. From the definition of
harmonic sums at mullti-indices, we need only consider the case s1, . . . , sk ∈
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Z−. Given s1, . . . , sk ∈ Z−. Remarks that in this case, Hs1,...,sk(N) is a
polynomial of degree m := −s1 − . . .− sk + k on N . Suppose that

Hs1,...,sk(N) =
m∑
n=0

anN
n. (2.9)

On the other hand, from r ∈ (0, 1), there is a constant c > 0 such that

r =
1

1 + c
. Then we get

rN =
1

(1 + c)N
=

1
N∑
i=0

(
N

i

)
ci
. (2.10)

Note that
N∑
i=0

(
N

i

)
ci is also a polynomial on N for any i = 0, . . . , N . Then

it is easily seen that

lim
N→+∞

|Hs1,...sk(N)rN | = lim
N→+∞

m∑
t=0

atN
t

N∑
i=0

(
N

i

)
ci

= 0. (2.11)

On the other hand, for any s1, . . . , sr ∈ Z, we get

Hs1,...,sr(N)− Hs1,...,sr(N − 1) =
1

N s1
Hs2,...,sr(N − 1),∀N ∈ N∗.

Moreover, for any z ∈ C such that |z| < 1, we also have5

Lis1,...,sr(z) = (1− z)
∑
N≥0

Hs1,...,sr(N)zN

= Hs1,...,sr(0) +
∞∑
N=1

[Hs1,...,sr(N)− Hs1,...,sr(N − 1)] zN .(2.12)

Hence, from the equation (2.11) and using Theorem 2, the other statements
of Proposition 2 is proved. �

A set D ⊂ K is said to be infraconnected if the closure of the set {|x−a| :
x ∈ D} is an interval for each a ∈ K.

Let’s D be an infraconnected subset of K and f ∈ H(D). Let α ∈ D◦

and let r > 0 such that d(α, r) ⊂ D. Suppose that f(x) =
∞∑
n=q

bn(x − α)n

whenever x ∈ d(α, r) with bq(α) 6= 0 and q > 0. Then α is called a zero of

5Remark that for any s1, . . . , sr ∈ Z then Hs1,...,sr (0) = 0. However, H1Z(0) = 1 where
1Z is called the empty index.
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multiplicity order q or more simply, a zero of order q. In the same way, q is
called the multiplicity order of α.

Corollary 1. The polylogarithms Lis1,...,sk(z) at (s1, . . . , sk) ∈ Zk− is not
invertible in d(0, 1−).

Proof. Note that, for any R ∈ R+ and f ∈ A(d(a,R−)), the function f
is invertible in A(d(a,R−)) if and only if f has no zero in d(a,R−) [9].
Moreover, since the definition of polylogarithms, z = 0 is a solution of
Lis1,...,sk(z). Thus, Lis1,...,sk(z) is not invertible in A(d(a, 1−)). �

Recall that

Theorem 2. [9, 10] LetR ∈ R∗+. The K−subalgebraAb(d(0, R−)) ofA(d(0, R−))
is a Banach K−algebra with respect to the norm ‖ .‖d(0,R−). Further, this
norm is multiplicative and satisfies

‖f‖d(0,R−) = lim
r→R
|f |(r) = sup

n∈N
|an|Rn.

Let f(x) =
∞∑
n=0

anx
n ∈ A(d(0, R−)). Then f is bounded in d(0, R−) iff so

is the sequence (|an|Rn)n∈N. Moreover, if f is bounded then ‖f‖d(0,R−) =
sup
n∈N
|an|Rn.

Using the statements as in the proof of Proposition 2 one again, for any
s1, . . . , sr ∈ Z, we obtain that

Lis1,...,sr(z) = Hs1,...,sr(0) +
∞∑
N=1

[Hs1,...,sr(N)− Hs1,...,sr(N − 1)] zN

where, for any R ∈ (0, 1), we have

lim
N→∞

|Hs1,...,sr(N)− Hs1,...,sr(N − 1)| RN = 0.

This means that the sequence
(
|Hs1,...,sr(N)− Hs1,...,sr(N − 1)| RN

)
N≥1 is

bounded. Then the polylogarithm function Lis1,...,sr(z) is bounded in d(0, R−)
for any R ∈ (0, 1). Thus we get

‖Lis1,...,sr ‖d(0,R−) = lim
r→R
|Lis1,...,sr |(r)

= sup
n∈N

(|an| Rn)

= sup
n∈N

(
|Hs1,...,sr(N)− Hs1,...,sr(N − 1)| RN

)
= 0.
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In fact, for R = 1, this is also valid if lim
N→∞

Hs1,...,sr(N) < ∞. However, in

the general case, this is false. For example, we have

H−1(N) =
N∑
n=1

n =
N(N + 1)

2

for any N ∈ N. Hence

lim
N→∞

|H−1(N)− H−1(N − 1)| = lim
N→∞

|N(N + 1)

2
− N(N − 1)

2
| = lim

N→∞
N = +∞.

This means that we can not conclude the value of ‖Li−1 ‖d(0,1−) by using
Theorem 2.

3. The Mittag-Leffler theorem and Polylogarithms

Let D to be a closed infraconnected subset of K. We recall again
now a following important result.

Theorem 3. [9] Let f ∈ H(D). There is a unique sequence of holes (Tn)n∈N∗

of D and a unique sequence (fn)n∈N in H(K\Tn) such that f0 ∈ H(D̃) for
any n > 0, lim

n→∞
fn = 0 satisfying further

f =
∞∑
n=0

fn and ‖f‖D = sup
n∈N
‖f‖D. (3.1)

For every hole Tn = d(an, r
−
n ), we have

‖fn‖D = ‖fn‖K\Tn = ϕan,rn(f) ≤ ‖f‖D. (3.2)

If D is bounded and if D̃ = d(a, r), we have

‖f0‖D = ‖f0‖D̃ = ϕa,r(f0) ≤ ϕa,r(f) ≤ ‖f‖D. (3.3)

Let D′ = D̃\
(
∞⋃
n=1

Tn

)
. Then f belongs to H(D′) and its decomposition in

H(D′) is given again by (3.1) and f satisfies ‖f‖D′ = ‖f‖D.

Using Theorem 3, for any f ∈ H(D), we consider the series
∞∑
n=1

fn which

is as in the equation (3.1). Each Tn is called a f−hole and

fn, n ∈ N∗ is called the Mittag - Leffler term of f associated to Tn.
f0 is called the principal term of f .

For each f−hole T of D, the Mittag - Leffler term of f associated to T is

denoted by
=

fT whereas the principal term of f will be denoted by
=

f0 .

The series
∞∑
n=1

fn is called the Mittag - Leffler term of f on the infracon-

nected set D.
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Example 1. Given f ∈ H(d(0, 1−)) and denoted (d(αm, 1
−))m∈N+ to be the

set of f−holes. Then we recall that f can be rewriten by

f =
+∞∑
n=0

an,0x
n +

∑
m,n∈N+

an,m
(x− αm)n

(3.4)

where lim
n→∞

an,0 = 0, lim
n→∞

|an,m| = 0,∀m ∈ N+ and lim
m→∞

( sup
n∈N+

|an,m|) = 0.

Moreover, we get

‖f‖d(0,1−) = sup
m∈N,n∈N+

|an,m|. (3.5)

Conversely, every function f of the form (3.4), with αm satisfying

|αm| = |αj − αm| = 1,∀m 6= j,

belongs to H(d(0, 1−)). The norm ‖ .‖d(0,1−) is multiplicative and equal to
ϕ0,1.

Taking f(z) = LiP (z) for any P ∈ (C[x∗0, x
∗
1, (−x0)∗], tt , 1X∗). Recall that

for any z ∈ C such that |z| < 1, we have Li(−x0)∗(z) = z, Lix∗0(z) =
1

z
and

Lix∗1(z) =
1

1− z
[5]. Hence, for any such series P , we have

LiP (z) =
∑
n≥0

aP,nz
n +

∑
n∈J⊂N∗

an,0
zn

+
∑

n∈I⊂N∗

an,1
(1− z)n

where I, J are the finite sets of indices. From |1| = |0 − 1| = 1, we obtain
that

‖LiP ‖d(0,1−) = sup
m∈{0,1},n∈N+

|an,m| = max
n∈N+

(max(|an,0|, |an,1|)). (3.6)

For example, taking P = (−x0)∗ tt(4x0)
∗ tt x∗1, then we have

LiP (z) = Li(−x0)∗(z) Li(4x0)∗(z) Lix∗1(z) = z
1

z4
1

1− z
=

1

z3(1− z)
=

1

z3
+

1

z2
+

1

z
+

1

1− z
.

Hence ‖Li(−x0)∗ tt (4x0)∗ tt x∗1 ‖d(0,1−) = 1. Note that, from the definition of the

shuffle product [5], in this case, we have P = (3x0 + x1)
∗ =

∞∑
n=0

(3x0 + x1)
n.

In particular, for any s1, . . . , sr ∈ (Z\N∗), the polylogarithm Lis1,...,sr(z) is

a polynomial on
1

1− z
of degrre m = |s1 + s2 + . . .+ sr|+ r with coefficients

in Q [5]. This means that, for any z ∈ C such that |z| < 1, we get

Lis1,...,sr(z) =
m∑
k=0

as1,...,sr,k
(1− z)k

,
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where ak ∈ Q for any k = 0, . . . ,m. In fact, there was an algorithm to
calculate the coefficients as1,...,sr,k, k ∈ N [5]. And then we can give an
useful algorithm to determinate the value of norm ‖Lis1,...,sr ‖d(0,1−) for any
s1, . . . , sr ∈ (Z\N∗).
Definition 1. Let f ∈ Hb(D) and let T be a hole of D. For any a ∈ T , let

fT (z) =
∞∑
n=0

bn(a)

(z − a)n
. We set res(f, T ) = b1(a) and call the residue of f on

the hole T .

In fact, for any f ∈ Hb(K\d(a, r−) and for each α ∈ d(a, r−), then we

can rewriten f(x) by f(x) =
∞∑
n=0

bn(α)

(x− α)n
. Moreover, the coefficient b1(α)

doesn’t depend on α in d(α, r−).

Example 2. Let s1, s2 be the non-positive integer. We showed that

Lis1,s2(z) =

|s1+s2|+2∑
k=0

a−s1,−s2k

(1− z)k
(3.7)

where at1,t2k are the rational numbers which are calculated by the following
algorithm:

If t1 = 0 then at1,t2k =


at2k−1 for any k = t1 + t2 + 1

at2k−1 − a
t2
k for every 1 ≤ k ≤ t1 + t2

−at2k for any k = 0
0 otherwise.

If t1 > 0 then at1,t2k =


(k − 1)at1−1,t2k−1 for any k = t1 + t2 + r + 1

(k − 1)at1−1,t2k−1 − kat1−1,t2k for any 2 ≤ k ≤ t1 + t2 + r

−at1−1,t2k for any k = 1
0 otherwise.

We denote () to be the empty index. Recalls that a
()
0 = 1 and a

()
k = 0,∀k > 0.

Then we have
res(Lis1,s2 , T ) = a

|s1|,|s2|
1

with T = {1}. Moreover, we get:

‖Lis1,s2 ‖d(0,1−) = sup
k∈(N∩[0,|s1+s2|+2])

|a|s1|,|s2|k | = max
k∈(N∩[0,|s1+s2|+2])

|a|s1|,|s2|k |.

In more general case, for any s1, . . . , sr ∈ (Z\N∗), the polylogarithm

Lis1,...,sr(z) is a polynomial of degree |s1 + . . .+ sr|+ r on
1

1− z
with coef-

ficients in Q [4, 5]. This means that

Lis1,...,sr(z) =

|s1+...+sr|+r∑
k=0

a
|s1|,...,|sr|
k

(1− z)k
(3.8)
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where for any t1, . . . , tr ∈ N, the coefficients at1,...,trk are calculated by the
following algorithm:

If t1 = 0 then

at1,...,trk :=


at2,...,trk−1 for k = t1 + . . .+ tr + r + 1,

at2,...,trk−1 − at2,...,trk for 1 ≤ k ≤ t1 + . . .+ tr + r,

−at2,...,trk for k = 0,

0 otherwise.

If t1 > 0 then

at1,...,trk :=


(k − 1)at1−1,t2,...,trk−1 for k = t1 + . . .+ tr + r + 1,

(k − 1)at1−1,t2,...,trk−1 − kat1−1,t2,...,trk for 2 ≤ k ≤ t1 + . . .+ tr + r,

−at1−1,t2,...,trk for k = 1,

0 for otherwises.

Proposition 3. Then we obtain that

res(Lis1,...,sr , T ) = max
k∈(N∩[0,|s1+...+sr|+r])

|a|s1|,...,|sr|k | (3.9)

for any s1, . . . , sr ∈ (Z\N∗) and T = {1}.

Note that, for any n ∈ N∗ and s1; . . . ; sr ∈ Z, we get

Li(n)s1;s2;...;sr
(z) =

1

zn
Lis1−n;s2;...;sr(z). (3.10)

By a result of the classical upper bound of |f ′|(r) in function of |f |(r)[9],
we obtain that

Proposition 4. For any n ∈ N; t ∈ (0, 1) and s1, . . . ; sr ∈ Z, we have

|Lis1;...;sr |(t) ≥
tn

n!
|g|(t) (3.11)

where g(t) =
1

tn
Lis1−n;...;sr(t).

4. Polylogarithm as a meromorphism function

In this section, we will start from the lemma as follows:

Lemma 3. Let E = K \ d(a, r−) with a ∈ K and r > 0. Let f ∈ H(E) be

invertible in H(E). Then f(x) is a Laurent series of the form
q∑

n=−∞
an(x−a)n

with |aq|rq > |an|rn for every n < q.

From Lemma 3, we obtain that
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Theorem 4. Let T = d(0, r−) with a ∈ K and r > 0, let E = K \ T
and take b ∈ T . For any s1, . . . , sr ∈ N, there exists λ ∈ K, q ∈ Z and
h ∈ H(E) invertible in H(E), satisfying ‖h − 1‖E < 1, lim

|x|→+∞
h(x) = 1

and Li−s1,...,−sr(x) = λ(x − b)qh(x). Moreover, λ, q are respectively unique,
satisfying those relations. Further, both λ, q do not depend on b in T .

Proof. For any s1, . . . , sr ∈ (Z\N+) and z ∈ C∪ d(0, 1−), the polylogarithm

functions Lis1,...,sr(z) was showed as a polylomial on
1

z − 1
. Then we can

extend these functions as a meromorphism functions on E = C\d(0, 1).
In fact, for any s1, . . . , sr ∈ N, we get

Li−s1,...,−sr(z) =

|s1+...+sr|+r∑
k=0

a
|s1|,...,|sr|
k

(1− z)k
(4.1)

where the coefficients a
|s1|,...,|sr|
k are defined - well as in the equation (3.8).

Setting now

k0 = min k|a|s1|,...,|sr|k 6= 0.

Then we get q = k0, λ = a
|s1|,...,|sr|
k0

and

h(z) =

|s1+...+sr|+r∑
k=0

a
|s1|,...,|sr|
k

a
|s1|,...,|sr|
k0

(1− z)k−k0
.

�

Example 3. For example, for any |z| < 1, we have

Li−3(z) =
6

(−1 + z)4
+

12

(−1 + z)3
+

7

(−1 + z)2
+

1

(−1 + z)
. (4.2)

Then we can extend this function to a function on C which has the same
value with Li−3(z) for any |z| < 1. Of course, this extension function is
meromorphism and invertible on E = C\d(0, 1). In fact, we have

Li−3(z) = (z − 1)

[
6

(−1 + z)3
− 12

(−1 + z)2
+

7

(−1 + z)
+ 1

]
= (z − 1)h(z)

where h(z) =
6

(−1 + z)3
− 12

(−1 + z)2
+

7

(−1 + z)
+ 1. It is easily seen that

λ = q = 1.

lim
|z|→∞

h(z) = lim
|z|→∞

[
6

(−1 + z)3
− 12

(−1 + z)2
+

7

(−1 + z)
+ 1

]
= 1.

h(z) =
6

(−1 + z)3
− 12

(−1 + z)2
+

7

(−1 + z)
+ 1 =

z3 + 4z2 + z

(z − 1)3
is

invertible in H(E).
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‖h− 1‖E < 1.

Hence, there exists λ ∈ K, q ∈ Z and h ∈ H(E) invertible in H(E), satisfy-
ing ‖h− 1‖E < 1, lim

|z|→+∞
h(z) = 1 and

Li−3(z) = λ(z − 1)qh(z).

Definition 2. Let K\d(a, r−) with a ∈ K and r > 0. Let f ∈ H(E) be
invertible in H(E) and let λ(x−a)qh(x) be the factorization given in Theo-
rem 4. The integer q is called the index of f associated to d(a, r−), namely
by m(f, d(a, r−)).

If λ = 1 the element f is called a pure factor associated to d(a, r−). Let
GT be the group of invertible elements of H(K\T ).

It is easy seen that Li−3(z) is a pure factor associated to d(0, 1−). More-
over, for every n ∈ N, the polylogarithm Li−n(z) is a pure factor associated
to d(0, 1−).

Proposition 5. Let T = d(a, r−). The set of pure factors associated to T is
a sub-multiplicative group of the group GT . Further, every element of GT is
of the form λh with h a pure factor associated to T and λ ∈ K∗.

We denote byM(K) the field of fractions of A(K). The element ofM(K)
is called meromorphism function in K.

Given a ∈ K and r ∈ R+. We denote byM(d(a, r−)) (resp. Mb(d(a, r−))
and Mu(d(a, r−))) field of fractions of A(d(a, r−)) (resp. Ab(d(a, r−)) and
the set M(d(a, r−))\Mb(d(a, r−))). The element of M(d(a, r−)) is called
meromorphism function in d(a, r−).

In fact, each of polylogarithms

Lis1,...,sr(z) =
∑

n1>n2>...>0

zn1

ns11 . . . nsrr

is a meromorphism function in d(0, 1−). Moreover, by the continuation
extension, we can extend these functions as a meromorphism function in C.
For example, we have

Li−2,−1(z) :=
∑

n2>n1>0

zn1

ns11 n
s2
2

=
z4 + 7z3 + 4z2

(1− z)5
,∀|z| < 1. (4.3)

Hence Li−2,−1(z) is a meromorphism function in d(0, 1−). Extending this
function to C as a fraction function on C, meaning

Li−2,−1(z) =
z4 + 7z3 + 4z2

(1− z)5
,∀z ∈ C.

Then Li−2,−1(z) is a meromorphism function in C.
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Now, we define a divisor in K (resp. a divisor in a disk d(a,R−)) to be a
map T : K → N (resp. T : d(a,R−) → N whose support is countable and
has a finite intersection with each disk d(a, r),∀r > 0 (resp. ∀ r ∈ (0, R)).
This means that, for any f ∈ M(K) (resp. of d(a,R−)), we can define the
divisor D(f) of f as D(f)(α) = 0 whenever f(α) 6= 0 and D(f)(α) = s when
f has a zero of order s at α.

Given K ≡ R. For any s1, . . . , sr ∈ N then Li−s1,...,−sr(z) is a polynomial

of degree s1 + . . .+ sr + r on
1

1− z
. Thus this function can be rewriten by

Li−s1,...,−sr(z) =
P (x)

(1− z)s1+...+sr+r
(4.4)

where P (x) ∈ R[x] such that deg(P (x)) = s1 + . . . + sr + r − 1. Since the
number of roots of P (x) is not exceeded deg(P (x)), we have

]supp(D(Li−s1,...,−sr)) ≤ s1 + . . .+ sr + r − 1. (4.5)

For example, we have

Li−2,−3(z) =
z6 + 29z5 + 93z4 + 53z3 + 4z2

(1− z)7
,∀|z| < 1.

Setting by

P (z) = z6 + 29z5 + 93z4 + 53z3 + 4z2 = z2(z4 + 29z3 + 93z2 + 53z + 4).

Then the set of real roots of P (z) is {z1, z2, z3, z4, 0} where z1 ∈ (−26;−25);

z2 ∈
(
−3;−5

2

)
; z3 ∈

(
−1;−1

2

)
and z4 ∈

(
−1

2
; 0

)
. Hence, on the domain

of Li−2,−3(z), we get

D(Li−2,−3)(z) =

2 if z = 0,
1 if z = z3 or z = z4,
0 otherwise.

(4.6)

On the other hand, we have

Lemma 4. Let f ∈ M(K). There exist h ∈ A(K) such that D(h) = D(f)

and then l =
h

f
∈ A(K). Then D(

1

f
) = D(l) and we can write f in the form

h

l
with h, l ∈ A(K) having no common zero.

Since Lemma 4, it is easily seen that P (1) 6= 0 where the polynomial P (x)
is determinated as in (4.4).

Similarly, given an ideal I of A(K) (resp. of A(d(0, R−))), we denote by
D(I) the lower bound of the D(f) with f ∈ I and D(I) is called the divisor
of I.
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To end this section, given f ∈M(K) \K (resp. f ∈Mu(d(0, R−)) which

has a pole α of order q and let f(x) =
−1∑
k=−q

ak(x− α)k + h(x) with a−q 6= 0

and h ∈ M(K) (resp. f ∈ Mu(d(0, R−)) and h holomorphic at α. The
coefficient a−1 is called residue of f at α and denoted by res(f, α).

Theorem 5. Let a ∈ K, R ∈ R∗+, f ∈ M(d(a,R−)) and r ∈ (0, R). Let
αj, j ≤ j ≤ q be the poles of f in d(a, r), let ρ ∈ (0,min

i 6=j
|αi − αj|) and

for each j = 1, . . . , q, let ρj ∈ (0, ρ) and setting Tj = d(αj, ρ
−
j ). Denote

D = d(α, r) \ (∪qj=1Tj). Then f belongs to H(D) and res(f, αj) = res(f, Tj)
for any j = 1, . . . , q.

As a direct consequence of Theorem 5, let f ∈ Hb(D) be a meromorphism
function in T = d(b, r−) and admits only one pole b inside T . Let q be the
multiplicity order of b. Then the Mittag - Leffler term of f associated to

T is of the form
q∑
j=1

aj
(x− b)j

with aq 6= 0 and also is of the form
P (x)

(x− aj)q
where P (x) is a polynomial of degree s < q. Moreover, it does not depend
on r when r tends to 0.

5. Some other computations on Polylogarithms

Given a divisor T = (an, qn)n∈N with 0 < |an| ≤ r, ∀n ∈ N∗, we de-
note by T the divisor (an, 1)n∈N. Let f ∈ A(d(a,R−)) and let (an, qn)n∈N =
D(f). Then ωan(f) = qn for every n ∈ N and ωα(f) = 0 for every
α ∈ d(a,R−) \ {an|n ∈ N}.

For any f =
h

l
∈ M(K) (resp. f =

h

l
∈ M(d(a,R−))) and each α ∈ K

(resp. f =
h

l
∈ d(a,R−)), the number ωα(h)−ωα(l) does not depend on the

functions h, l choosed to make f =
h

l
. Thus we can generalize the notation

by setting

ωα(f) = ωα(h)− ωα(l).

Note that

If ωα(f) is an positive integer q > 0 then α is called a zero of f of
order q.
If ωα(f) is an negative integer q < 0 then α is called a pole of f of
order q.
If ωα(f) ≥ 0 then f is holomorphic at α.
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Let (an)1≤n≤σ(r) be the finite sequence of zeros of f such that 0 < |an| ≤ r,
of respective order sn. Setting now

Z(r, f) = max(ω0(f), 0) log r +

σ(r)∑
n=1

sn(log r − log |an|) (5.1)

where we define that

ω0(f) =

{
q if 0 is a multiple solution of order q of f
−q if 0 is a tipping point of order q of f

. (5.2)

Moreover, Z(r, f) is called the counting function of zeros of f in d(0, r),
counting multiplicity.

Example 4. We have that

Li−1,−2,−2(z) =
z7 + 34z6 + 133z5 + 100z4 + 12z3

(1− z)8
,∀z ∈ C such that |z| < 1.

Remark again that

z7 + 34z6 + 133z5 + 100z4 + 12z3 = z3
(
z4 + 34z3 + 133z2 + 100z + 12

)
.

This implies that

ω0(Li−1,−2,−2(z)) = 3.

By using the computer, it is easily seen to prove that the polynomial

z4 + 34z3 + 133z2 + 100

has 2 real solutions z ∈ R such that |z| < 1, namely by z1, z2 where z1 ∈(
−1;−1

2

)
and z2 ∈

(
−1

2
; 0

)
. Thus, for any r ∈ (0, 1], we obtain that

Z(r,Li−1,−2,−2(z)) =

 3 log r if r < |z2|
4 log r − log(z2) if |z2| ≤ r < |z1|

5 log r − log(z1)− log(z2) if |z1| ≤ r < 1
.

Setting now

ω0(f) =

{
0 if ω0(f) ≤ 0
1 if ω0(f) > 0

(5.3)

where f is a meromorphism function. In addition, we also denote by Z(r, f)
the counting function of zeros of f without multiplicity:

Z(r, f) = ω0(f) log r +

σ(r)∑
n=1

(log r − log |an|) (5.4)

and this symbol is called the counting function of zeros of f in d(0, r) ig-
noring multiplicity.
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Example 5. By Example 4, for any r ∈ (0, 1], we obtain that

Z (r, Li−1,−2,−2) =

 log r if r < |z2|
2 log r − log(z2) if |z2| ≤ r < |z1|

3 log r − log(z1)− log(z2) if |z1| ≤ r ≤ 1
.

Denote that the finite chain {bn}τ(r)n=1 of poles of function f such that
0 < |bn| ≤ r, with respective multiplicity order tn. We call

N(r, f) = max (−ω0(f), 0) log r +

τ(r)∑
n=1

tn (log r − log |bn|)

to be the counting function of the poles of f , counting multiplicity.
At the moment, one denotes that

ω0(f) =

{
0 if ω0(f) ≥ 0
1 if ω0(f) ≤ −1

(5.5)

and the counting function of the poles of f , ignoring multiplicity is well-
defined by

N(r, f) = ω0(f) log(r) +

τ(r)∑
n=1

(log(r)− log(| bn |)) . (5.6)

On the other hand, the Nevanlinna function6 T (r, f) in I or J is defined
by

T (r, f) = max (Z(r, f);N(r, f)) . (5.7)

Note that the functions Z,N, T aren’t changed, up to an additive constant,
if we change the origin.

Lemma 5 ([9]). Let K̂ be a complete algebraically closed extension of K
whose absolute value extends that of K and let f ∈ M(K) (resp. let

f ∈ M(d(0, R−))). Let d̂(0, R) =
{
x ∈ K̂ | | x |< R

}
. The meromorphic

function f̂ defined by f in d̂(0, R) has the same Nevanlinna functions as f .

One notes also that

Lemma 6 ([9]). Let α1, . . . , αn ∈ K be pairwise distinct and f ∈M (d(0, R−)).
Suppose that

P (u) =
n∏
i=1

(u− αi) .

Then Z (r, P (f)) =
n∑
i=1

Z (r, f − αi) and Z (r, P (f)) =
n∑
i=1

Z (r, f − αi).

6It is called characteristic function of f .
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Recall that, for any n ∈ N,

Li−n(z) =
z

(1− z)n+1
An(z). (5.8)

Note that An+1(z),∀n ∈ N is a polynomial of degree n. Moreover, this poly-
nomial has only negative and simple real roots, a result due to Frobenius.
By Lemma 6, for any f ∈M (d(0, r−)), r ∈ R+ and n ∈ N,

Z (r, An+1(f)) =
n∑
i=1

Z (r, f − αi) (5.9)

and

Z (r, An+1(f)) =
n∑
i=1

Z (r, f − αi) (5.10)

where α1, . . . , αn are the real roots of polynomial An+1(z).
In general case, for any s ∈ N∗ and n1, . . . , ns ∈ N, we get

Li−n1,...,−ns(z) =
zs

(1− z)n1+...+ns+s
An1,...,ns(z). (5.11)

where An1,...,ns(z) is a polynomial of degree n1 + . . .+ ns − 1 on z with the
rational coefficients. By the computers, we can see that these polynomials
have also real roots. For example, the polynomial A3,4(z) = z6 + 127z5 +
1458z4+3654z3+2429z2+387z+8, has 6 real roots z1 ∈ (−115;−114), z2 ∈
(−10;−9), z3 ∈ (−3;−2), z4 ∈ (−1;−1

2
), z5 ∈ (−1

2
;− 1

10
), z6 ∈ (− 1

10
; 0).

The polynomial A1,0,2(z) = z2 + 6z+ 3, has 2 real roots and the polynomial
A1,1,2(z) = z3 + 15z2 + 26z + 6 has 3 real roots. And then, using Lemma 6,
we obtain that

Proposition 6. For any n1, . . . , nr ∈ N,

Z (r, An1,...,ns(f)) =

n1+...+ns−1∑
i=1

Z (r, f − αi) (5.12)

and

Z (r, An1,...,ns(f)) =

n1+...+ns−1∑
i=1

Z (r, f − αi) (5.13)

where α1, . . . , αn1+...+ns−1 are the real roots of polynomial An1,...,ns(z).

Suppose that F is a subset of meromorphic functions. Recall that a
polynomial P (z) is called a strong uniqueness polynomial for F if for any
two non-constant meromorphic functions f, g ∈ F , then

(P (f) = cP (g); c 6= 0) =⇒ (f = g) . (5.14)
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Theorem 6 ([16]). Let P (z) be a polynomial satisfying P (1)P ′(1) 6= 0. Then
P (z) is a strong uniqueness polynomial for L−functions.

Since the definition of the class of polynomials As1,...,sr(z), using Theorem
6, we obtain that

Corollary 2. For any s1, . . . , sr ∈ N, the polynomial As1,...,sr(z) is a strong
uniqueness polynomial for L−functions.

Given f to be a meromorphic function in C and a ∈ C∪{∞}. We denote
by Ef (a) the set of a−points of f counted with its multiplicities. Moreover,
for any nonempty subset S of C ∪ {∞}, set that

Ef (S) =
⋃
a∈S

Ef (a). (5.15)

And then, the subset S is called a unique range set, counting multiplicities
for F if for any f, g ∈ F then

(Ef (S) = Eg(S)) =⇒ (f = g). (5.16)

Thank so much the works of authors in [16] who sent to the important
results about the set of roots of a strong uniqueness polynomial. As an
immediate consequnce of those results, we obtain that

Theorem 7. For any s1, . . . , sr ∈ N, the set of roots of the polynomial
As1,...,sr(z) is unique range set, counting multiplicities for L−functions.
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