Ta Thi Hoai An


Full Professor, Doctor of Science

Department of Number Theory
Research interests:

Algebraic Number Theory, Nevanlinna Theory, Algebraic geometry


Address
Office: Building A5, Room 305
Tel: +84 024 37563474 (ext. 154)
Email: tthan AT math.ac.vn

Education and academic degrees:

  • 1993: Bachelor/Master
  • 2001: PhD
  • 2014: Doctor of Science
  • 2009: Associate Professor
  • 2023: Full Professor


Research areas: Algebraic Number Theory, Nevanlinna Theory, Algebraic geometry

Fellowships and awards: 

  • Award by Institute of Mathematics Vietnam 2009.
  • - Humboldt Research Fellowship for experience researcher, Germany.   
  • - Junior Associate Research Member at ICTP, Italy (2004-2012).


Visiting  positions:

  •  Free University, Berrlin Germany 2014-2014.
  • September to October 2010: Mathematical Institute, Academia Sinica, Taiwan.
  • July 2009: Mathematical Institute, Academia Sinica, Taiwan
  • February 2009- May 2009: Essen- Duisburg University, Germany (Humboldt Fellow).
  • November 2008-January 2009: Bonn, Germany
  • October to November 2008: Fields Institute, Toronto, Canada.
  • May 2008: Visiting associate professor, Blaise Pascal University, France.
  • Spring 2008: International Center for Theoretical Physics, Trieste, Italy.
  • Fall 2006: Mathematical Institute, Academia Sinica, Taiwan.
  • Fall 2005: International Center for Theoretical Physics, Trieste, Italy.
  • June-July 2004: Visiting associate professor, Blaise Pascal University, France.
  • From Sep. 2001 to June 2004:  Postdoctoral, Mathematical Institute, Academia Sinica, Taiwan.
  • From Oct. 2000 to Dec. 2000: Fourier Institute, Grenoble University, France.            
  • From May 1999 to July 1999: Paul Sabatier University, France.             

Student Supervision:

Ph.D.:  

  • Ha Tran Phuong, co-advisor, Ph. D. (Completed 2009), Hanoi Institute of Mathematics.
  • Nguyen Thi Ngoc Diep, co-advisor, Ph.D (ompleted 2015), Vinh University
  • Nguyen Viet Phuong (Currently)

Master:

  • Doan Thi Thao (Completed 2022),
  • Nguyen Thi Phuong  (Completed 2022),
  • Dang Thi Thu Thao (Completed 2021)
  • Nguyen Viet Phuong, M. S. (Completed 2009), Thai Nguyen university.
  • Nguyen Xuan Linh, M. S. (Completed 2009), Hanoi Nature Scinence university.
  • Nguyen Truong Giang, M. S. (Completed 2008), Thai Nguyen university.
  • Do Hong Nga, M. S. (Completed 2008), Thai Nguyen university.
  • Dao Thi Thu Ha, M. S. (Completed 2007), Thai Nguyen university.
  • Hoang Tan Viet, M. S. (Completed 2006), Thai Nguyen university.

Grant support:

  1. The second main theorem and applications, NAFOSTED, PI (currently)
  2. The Nevanlinna Index, NAFOSTED, PI (2018-2020)
  3. Distribution theory and some applications, NAFOSTED, PI (2015-2017)
  4. Buchi, Hensley’s problems for meromorphic functions and Related Topics, NAFOSTED, PI (2012-2014)
  5. Nevanlinna Theory and Related Topics, NAFOSTED, PI (2009-2011)

PUBLICATIONS

List of publications in MathSciNet

 

List of recent publications
1Ta Thi Hoai An, Nguyen Viet Phuong, A Non-Archimedean Second Main Theorem for Small Functions and Applications, Taiwanese Journal of Mathematics, 27 (2023), 913-929, (SCI-E, Scopus).
2Ta Thi Hoai An, Nguyen Viet Phuong , A lemma about meromorphic functions sharing a small function. Computational Methods and Function Theory 22 (2022), no. 2, 277–286, (SCI-E, Scopus).
3Ta Thi Hoai An, Nguyen Viet Phuong, Zeros of Differential Polynomials of Meromorphic Functions, Acta Mathematica Vietnamica, 47 (2022), pages 211–221, (Scopus).
4Ta Thi Hoai An, Nguyễn Việt Phương, A note on Hayman’s conjecture, International Journal of MathematicsVol. 31, No. 06, 2050048 (2020), (SCI-E), Scopus.
5Alain Escassut, Ta Thi Hoai An, Classical p-adic Nevanlinna theory and Nevalinna theory out of a hole. [Corrected title: Classical p-adic Nevanlinna theory and Nevanlinna theory out of a hole] Advances in ultrametric analysis, 161–203, Contemp. Math., 704, Amer. Math. Soc., Providence, RI, 2018.
6Alain Escassut, Ta Thi Hoai An, New applications of the $p$-adic Nevanlinna theory p-Adic Numbers Ultrametric, p-Adic Numbers, Ultrametric Analysis and Applications, 10 (2018), 12–31.
7Ta Thi Hoai An, Nguyen Viet Phuong, Uniqueness theorems for differential polynomials sharing a small function. Computational Methods and Function Theory, 17 (2017), 613–634, SCI(-E); Scopus.
8Alain Escassut, Ta Thi Hoai An, P-Adic Nevanlinna Theory Outside of a Hole, Vietnam Journal of Mathematics, 45 (2017), 681–694, (Scopus).
9Thomas Hales, Mark Adams, Gertrud Bauer, Tat Dat Dang, John Harrison, Hoang Le Truong, Cezary Kaliszyk, Victor Magron, Sean Mclaughlin, Nguyen Tat Thang, Quang Truong Nguyen, Tobias Nipkow, Steven Obua, Joseph Pleso, Jason Rute, Alexey Solovyev, Ta Thi Hoai An, Tran Nam Trung, Thi Diep Trieu, Josef Urban, Ky Vu, Roland Zumkeller, A formal proof of the Kepler onjecture, Forum of Mathematics, Pi, 5 (2017) 29 pages.
10Ta Thi Hoai An, Cherry William, Wang Julie Tzu-Yueh, Supplement and Erratum to "Algebraic degeneracy of non-Archimedean analytic maps'' [Indagationes Mathematicae (N.S.) 19 (2008) 481–492] , Indagationes Mathematicae (N.S.) 26 (2015), 329–336,SCI(-E); Scopus.
11Ta Thi Hoai An, Nguyen Thi Ngoc Diep, Genus one factors of curves defined by separated variable polynomials, Journal of Number Theory, 133 (2013), 2616-2634, SCI(-E); Scopus.
12Ta Thi Hoai An, Hsiu-Lien Huang and J. T.-Y. Wang, Generalized B\"uchi's  problem for algebraic functions and meromorphic functions,  Mathematische Zeitschrift 273 (2013), 95-122, SCI(-E); Scopus.
13Ta Thi Hoai An, Nguyen Thi Ngoc Diep, Heights of Function Field Points on Curves Given by Equations with Separated Variables,  International Journal of Mathematics,23 (2012), SCI(-E); Scopus.
14Ta Thi Hoai An, William Cherry, Preface [Special issue dedicated to Professor Hà Huy Khoái on the occasion of his 65th birthday], Vietnam J. Math. 39 (2011), no. 3, v--vii.
15Ta Thi Hoai An, J. T.-Y. Wang, Hensley's problem for complex and non-Archimedean meromorphic functions, Journal of Mathematical Analysis and Applications 381(2011), 661 -- 677, SCI(-E); Scopus.
16Ta Thi Hoai An, A. Levin and J. T.-Y. Wang, A $p$-adic Nevanlinna-Diophantine correspondence, Acta Arithmetica 146 (2011), 379 -- 397, SCI(-E); Scopus.
17Ta Thi Hoai An, Unique range sets for meromorphic functions constructed without an injectivity hypothesis, Taiwanese Journal of Mathematics, 15 (2011), 697 -- 709, SCI(-E); Scopus.
18Ta Thi Hoai An, Julie Tzu-Yueh Wang, A note on uniqueness polynomials of entire functions, Vietnam J. Math. 37 (2009), 225-236.
19Ta Thi Hoai An, Ha Tran Phuong, On an explicit estimate on multiplicity truncation in the second main theorem for holomorphic curves encountering hypersurfaces in general position in projective space, Houston Journal of Mathematics, 35 (2009), 775-786.
20Ha Huy Khoai, Ta Thi Hoai An, A survey on uniqueness polynomials and unique range sets. In: Some topics on value distribution and differentiability in complex and p-adic analysis.,143-163; Math. Monogr. Ser., 11, Sci. Press Beijing, 20008.
21Ta Thi Hoai An, Ha Huy Khoai, Uniqueness polynomials and unique range sets. Some topics on value distribution and differentiability in complex and p-adic analysis, 148–163, Math. Monogr. Ser., 11, Sci. Press Beijing, Beijing, 2008.
22Ta Thi Hoai An, A. Escassut, Meromorphic solutions of equations over non-Archimedean fields, Ramanujan J. 15 (2008),  N0 3, 415 - 433.
23Ta Thi Hoai An, J. T.-Y. Wang and P.-M. Wong, Non-Archimedean analytic curves in the complements of hypersurface divisors. J. Number Theory 128 (2008), 2275 - 2281.
24Ta Thi Hoai An, W. Cherry and J.T.-Y. Wang, Algebraic degeneracy of non-archimedean analytic maps, Indagationes Math. 19 (2008), 481-492, preprint arXiv:0708.0401.
25Ta Thi Hoai An, Wang, Julie Tzu-Yueh, An effective Schmidt's subspace theorem for non-linear forms over function fields. Journal of Number Theory 125 (2007), no. 1, 210--228, (SCI(-E), Scopus).
26Ta Thi Hoai An, J. T.-Y. Wang, Unique range sets and uniqueness polynomials for algebraic curves, Trans. Amer. Math. Soc. 359 (2007),  937 - 964(electronic).
27Ta Thi Hoai An, A defect relation for non-Archimedean analytic curves in arbitrary projective varieties, Proc. Amer. Math. Soc. 135 (2007),  1255 - 1261.
28Ta Thi Hoai An, J. T.-Y. Wang, An effective Schmidt's subspace theorem for non-linear forms over function fields, J. Number Theory 125 (2007),  210 - 228.
29Ta Thi Hoai An, Julie Tzu-Yueh Wang, Pit-Mann Wong, Unique range sets and uniqueness polynomials in positive characteristic. II. Acta Arith. 116 (2005), N0 2, 115 - 143.
30Ta Thi Hoai An, J. T.-Y. Wang, Unique range sets for non-Archimedean entire functions in positive characteristic fields. In: Ultrametric functional analysis, 323 - 333, Contemp. Math. 384, Amer. Math. Soc., Providence, RI, 2005.
31Ta Thi Hoai An, J. T.-Y. Wang and P.-M. Wong, Strong uniqueness polynomials: the complex case, Complex Var. Theory Appl. 49 (2004), 25 - 54.
32Ta Thi Hoai An, Julie Tzu-Yueh Wang, Pit-Mann Wong, Unique range sets and uniqueness polynomials in positive characteristic. Acta Arith. 109 (2003), 259 - 280
33Ha Huy Khoai, Ta Thi Hoai An, Uniqueness problem with truncated multiplicities for meromorphic functions on a non-Archimedean field, Southeast Asian Bull. Math. 27 (2003), 477 - 486.
34Ta Thi Hoai An, J. T.-Y. Wang, Uniqueness polynomials for complex meromorphic functions. Internat, J. Math. 13 (2002), 1095 - 1115.
35Ta Thi Hoai An, A new class of unique range sets for meromorphic functions on $\Bbb C$. Dedicated to the memory of Le Van Thiem (Hanoi, 1998), Acta Math. Vietnam. 27 (2002),  251 - 256.
36Ha Huy Khoai, Ta Thi Hoai An, On uniqueness polynomials and bi-URs for $p$-adic meromorphic functions, J. Number Theory 87 (2001),  N0 2, 211 - 221.
Preprints
1IMH20230605, Ta Thi Hoai An, Ngo Quoc Hoan, Polylogarithm functions via Nevallinna theory
2IMH20239604, Ta Thi Hoai An, Ngo Quoc Hoan, Multiple Eulerian polynomials
3IMH20221205, Ta Thi Hoai An, Nguyen Viet Phuong, Quasi-normal family of meromorphic functions
4IMH20221204, Ta Thi Hoai An, Nguyen Viet Phuong, A non-Archimedean second main theorem for small functions and applications, Accepted by Taiwanese Journal of Mathematics