Phung Ho Hai
![]() |
Full Professor, Doctor of Science
Department of Number Theory
|
Address
Office: Building A6, Room 406
Tel: +84 24 37563474
Email: phung AT math.ac.vn
Education and academic degrees:
- 1987: Graduate from High School for gifted students at Hanoi University
- 1992: Graduated from Moscow State University (Title Magister of Mathematics and Physics)
- 1996: Ph. D. in Mathematics at Munich Unversity
- 2005: Habilitation at the University Duisburg-Essen
- 2006: Associate Professor
- 2012: Full Professor
Positions:
- Director of Institute of Mathematics Hanoi (IMH): 2017-
- Deputy-Director of Institute of Mathematics Hanoi (IMH): 2012-2017
- Since 1996: member of Institute of Mathematics, Hanoi
- 1997-2000: Postdoctoral felow at ICTP (Trieste), MPI-Mathematik (Bonn), MSRI (Berkeley)
- Since 2003: member of Research Group Esnault-Viehweg, University Duisburg-Essen
- Since 2007: member of the Transregio-Sonderforschungsbereich Bonn-Essen-Mainz
- 2005-2008: Heisenberg-fellow of the DFG
- Since 2006: Editor of Vietnam Journal of Mathematics
- Since 2008: Deputy Editor-in-Chief of Acta Mathematica Vietnamica
PUBLICATIONS
List of publications in MathSciNet
List of recent publications
1 | Phung Ho Hai, João Pedro dos Santos, Finite torsors on projective schemes defined over a discrete valuation ring, Algebraic Geometry, 10, (2023), page 1-40, (SCI-E, Scopus). |
2 | Indranil Biswas, Phung Ho Hai, João Pedro Dos Santos, On the fundamental group schemes of certain quotient varieties, Tohoku Mathematical Journal, 73(2021), 565-595, (SCI-E, Scopus). |
3 | Phung Ho Hai, João Pedro dos Santos, On the Structure of Affine Flat Group Schemes Over Discrete Valuation Rings, II , International Mathematics Research Notices, 12 (2021), Pages 9375–9424, (SCI(-E), Scopus). |
4 | Nguyên Luong Thái Bình, Nguyên Thi Phuong Dung, Phung Ho Hai, Jacobi-Trudi Type Formula for Character of Irreducible Representations of gl(m|1), Acta Mathematica Vietnamica, 44 (2019), pp 603–615, Scopus. |
5 | Phung Ho Hai, João Pedro P. dos Santos, The action of the etale fundamental group scheme on the connected component of the essentially finite one, Mathematische Nachrichten, 291 (2018),1733–1742, SCI(-E); Scopus. |
6 | Nguyen Dai Duong, Phung Ho Hai, João Pedro P. Dos Santos, On the structure of affine flat group schemes over discrete valuation rings, Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, XVIII (2018), 977-1032, SCI(-E); Scopus. |
7 | Nguyen Dai Duong, Phung Ho Hai, Tannakian duality over Dedekind rings and applications, Mathematische Zeitschrift, 288 (2018),1103–1142, SCI(-E); Scopus. |
8 | Nguyen Dai Duong, Phung Ho Hai, Nguyen Huy Hung, On the flatness and the projectivity over Hopf subalgebras of Hopf algebras over Dedekind rings, Journal of Algebra, 478 (2017), 237–260,SCI(-E); Scopus. |
9 | Phung Ho Hai, On an injectivity lemma in the proof of Tannakian duality, Journal of Algebra and Its Applications, 15 (2016),SCI(-E); Scopus. |
10 | Phung Ho Hai, Gauss-Manin stratification and stratified fundamental group schemes, Annales de l'institut Fourier, 63 (2013), 2267-2285, doi: 10.5802/aif.2829, SCI(-E); Scopus. |
11 | Nguyen Thi Phuong Dung, Phung Ho Hai, Nguyen Huy Hung, Construction of irreducible representations of the quantum super group $GL_q(3\mid 1)$, Acta Mathematica Vietnamica 36 (2011), 215 -- 229, Scopus. |
12 | Phung Ho Hai, H. Esnault, Two small remarks on Nori fundamental group scheme, In: Advanced Studies in Pure Mathematics, 60 (2010), 237 -- 243. |
13 | Phung Ho Hai, B. Kriegk and M. Lorenz, $N$-homogeneous superalgebras, J. Noncommut. Geom. 2 (2008), 1 - 51, preprint arXiv:0704.1888. |
14 | H. Esnault, Phung Ho Hai, Packets in Grothendieck's section conjecture, Adv. Math. 218 (2008), 395 - 416. |
15 | H. Esnault, Phung Ho Hai, X. Sun, On Nori's fundamental group scheme. In: Geometry and dynamics of groups and spaces, 377 - 398, Progr. Math., 265, Birkhọuser, Basel, 2008.preprint arXiv:math/0605645. |
16 | Phung Ho Hai, Tannaka-Krein duality for Hopf algebroids, Israel J. Math. 167 (2008), 193 - 225, preprint arXiv:math/0206113. |
17 | Phung Ho Hai, H. Esnault, The fundamental groupoid scheme and applications, Annales de l’Institut Fourier, 58 (2008), 2381-2412. |
18 | Phung Ho Hai, Martin Lorenz, Koszul algebras and the quantum MacMahon master theorem, Bull. Lond. Math. Soc. 39 (2007), 667 - 676, preprint arXiv:math/0603169. |
19 | Hélène Esnault, Phung Ho Hai, The Gauss-Manin connection and Tannaka duality, Int. Math. Res. Not. 2006, Art. ID 93978, 35 pp. |
20 | Phung Ho Hai, On the representation categories of matrix quantum groups of type A, Vietnam J. Math. 33 (2005), 357 - 367. |
21 | Phung Ho Hai, The homological determinant of quantum groups of type $A$. Proc. Amer. Math. Soc. 133 (2005), 1897 - 1905 (electronic), preprint arXiv:math/0305115. |
22 | Nguyen Thi Phuong Dung, Phung Ho Hai, Irreducible representations of quantum linear groups of type A1|0, J. Algebra 282 (2004), 809 - 830. |
23 | Phung Ho Hai, Nguyen Phuong Dung, On the Poincare series of quadratic algebras associated to Hecke symmetries, Int. Math. Res. Not. 2003, N0 40, 2193 - 2203. |
24 | Phung Ho Hai, On a theorem of Deligne on characterization of Tannakian categories. In: Arithmetic fundamental groups and noncommutative algebra (Berkeley, CA, 1999), 517 - 531, Proc. Sympos. Pure Math., 70, Amer. Math. Soc., Providence, RI, 2002. |
25 | Phung Ho Hai, An embedding theorem for abelian monoidal categories, Compositio Math. 132 (2002), 27 - 48, preprint arXiv:math/0004160. Corrigendum: ``An embedding theorem for abelian monoidal categories'' [Compositio Math. 132 (2002), N0 1, 27 - 48]. Compos. Math. 144 (2008), 1349 - 1350 |
26 | Phung Ho Hai, Characters of quantum groups of type $A_n$, Comm. Algebra 30 (2002), 1085 - 1117, preprint arXiv:math/9807045. |
27 | Phung Ho Hai, Realizations of quantum hom-spaces, invariant theory, and quantum determinantal ideals, J. Algebra 248 (2002), 50 - 84. |
28 | Phung Ho Hai, The integral on quantum supergroups of type AR|S, Asian J. Math. 5 (2001), 751 - 769. |
29 | Phung Ho Hai, Splitting comodules over Hopf algebras and application to representation theory of quantum groups of type A0|0. J. Algebra 245 (2001), 20 - 41. |
30 | Phung Ho Hai, On matrix quantum groups of type A_n. Internat. J. Math. 11 (2000), 1115 - 1146. |
31 | Phung Ho Hai, Hecke symmetries. Commutative algebra, homological algebra and representation theory (Catania/Genoa/Rome, 1998). J. Pure Appl. Algebra 152 (2000), 109 - 121. |
32 | Phung Ho Hai, On structure of the quantum supergroups GLq(m|n). J. Algebra 211 (1999), 363 - 383. |
33 | Phung Ho Hai, Poincaré series of quantum spaces associated to Hecke operators. Acta Math. Vietnam. 24 (1999), 235 - 246. |
34 | Phung Ho Hai, Central bialgebras in braided categories and coquasitriangular structures. J. Pure Appl. Algebra 140 (1999), 229 - 250. |
35 | Phung Ho Hai, Koszul property and Poincaré series of matrix bialgebra of type A_n. J. Algebra 192 (1997),734 - 748. |
36 | Phung Ho Hai, Poincaré series of quantum matrix bialgebras determined by pairs of quantum spaces. Comm. Algebra 23 (1995), 879 - 890. |
1 | IMH20230402, Trần Phan Quốc Bảo, Võ Quốc Bảo, Phung Ho Hai, Tannakian duality and Gauss-Manin connections for a family of curves |
2 | IMH20220801, Phung Ho Hai, João Pedro dos Santos, Pham Thanh Tâm, Đào Văn Thinh, Prolongation of regular singular connections on punctured affine line over a Henselian rin, preprint arxiv. |
3 | IMH20210702, Phung Ho Hai, João Pedro dos Santos, Pham Thanh Tam, Algebraic theory of formal regular-singular connections with parameters, preprint arXiv:2107.06474. |
4 | IMH20210605, Indranil Biswas, Phung Ho Hai, João Pedro dos Santos, Connections on trivial vector bundles over projective schemes, preprint arXiv:2106.08547 |
5 | IMH20200202, Phung Ho Hai, João Pedro dos Santos, Regular-singular connections on relative complex schemes, preprint arXiv:2002.0662. |
Highlights
23/10/23, Conference: International school and workshop on “Hopf Algebras and Aplications” |