Le Dung Muu
Full Professor, Doctor of Science
Cộng tác viên

Address
Office: Building A5, Room 210
Tel: +84 (0)4 37563474/210
Email: ldmuu AT math.ac.vn
Born in Thanh Hoa in 1949
Education and academic degrees
 Bachelor 1972 /Master: 1973, University of Budapest. Hungary
 Doctor of Science 1996, Institute of Mathematics. VAST
 Full Professor 2003
 Researcher
Research areas: Optimization, Variational Inequality, Equilibrium Problems
PUBLICATIONS
List of publications in MathSciNet
List of recent publications
1  Dang Van Hieu, Jean Jacques Strodiot, Le Dung Muu, An Explicit Extragradient Algorithm for Solving Variational Inequalities, Journal of Optimization Theory and Applications volume 185 (2020), 476–503, SCI(E), Scopus. 
2  Le Hai Yen, Nguyen Thi Thanh Huyen, Le Dung Muu, Muu, Le Dung A subgradient algorithm for a class of nonlinear split feasibility problems: application to jointly constrained Nash equilibrium models. Journal of Global Optimization 73 (2019), 849–868, SCI(E); Scopus. 
3  Dang Van Hieu, Dang Xuan Son, Pham Ky Anh, Le Dung Muu, A TwoStep ExtragradientViscosity Method for Variational Inequalities and Fixed Point Problems, Acta Mathematica Vietnamica, 44 (2019), pp 531–552, Scopus. 
4  Le Dung Muu, Le Xuan Thanh, A splitting algorithm for finding fixed points of nonexpansive mappings and solving equilibrium problems. Journal of Fixed Point Theory and Applications, 20:130, 2018, SCI(E); Scopus. 
5  Le Quang Thuy, Pham Ky Anh, Le Dung Muu, Trinh Ngoc Hai, Novel Hybrid Methods for Pseudomonotone Equilibrium Problems and Common Fixed Point Problems, Numerical Functional Analysis and Optimization, 38 (2017), 443–465,SCI(E); Scopus. 
6  Pham Ky Anh, Tran Viet Anh, Le Dung Muu, On Bilevel Split Pseudomonotone Variational Inequality Problems with Applications, Acta Mathematica Vietnamica, 42 (2017), 413–429, Scopus. 
7  Dang Van Hieu, Pham Ky Anh, Le Dung Muu, Modified hybrid projection methods for finding common solutions to variational inequality problems, Computational Optimization and Applications, 66 (2017), 75–96, SCI(E); Scopus. 
8  Phung Minh Duc , Le Dung Muu, A splitting algorithm for a class of bilevel equilibrium problems involving nonexpansive mappings, Optimization, 65 (2016), 18551866, SCI(E); Scopus. 
9  Le Hai Yen, Le Dung Muu, Nguyen Thi Thanh Huyen, An algorithm for a class of split feasibility problems: application to a model in electricity production, Mathematical Methods of Operations Research, 84, (2016), 549565, SCI(E); Scopus. 
10  Phung Minh Duc, Le Dung Muu, Nguyen Van Quy, SolutionExistence and Algorithms with Their Convergence Rate for Strongly Pseudomonotone Equilibrium Problems, Pacific Journal of Optimization 12 (2016), 833845, SCI(E); Scopus. 
11  Dang Van Hieu, Le Dung Muu, Pham Ky Anh, Parallel hybrid extragradient methods for pseudomonotone equilibrium problems and nonexpansive mappings, Numerical Algorithms, 73 (2016), 197217,SCI(E); Scopus. 
12  Tran Viet Anh, Le Dung Muu, A projectionfixed point method for a class of bilevel variational inequalities with split fixed point constraints. Optimization 65 (2016), 1229–1243,SCI(E); Scopus. 
13  Le Quang Thuy, Le Dung Muu, A Hybrid method for a system involving equilibrium problems, variational inequalitíes and nonexpansive semigroup, Journal of the Korean Mathematical Society, 28 (2015), 457478,SCI(E); Scopus. 
14  Bui Van Dinh, Le Dung Muu, A projection algorithm for solving pseudomonotone equilibrium problems and its application to a class of bilevel equilibria, Optimization 64 (2015), 559–575, SCI(E); Scopus. 
15  Nguyen Kieu Linh, Le Dung Muu, A convex hull algorithm for solving a location problem. RAIRO  Operations Research 49 (2015), 589–600, SCI(E), Scopus. 
16  Le Dung Muu, Nguyen Van Quy, On Existence and Solution Methods for Strongly Pseudomonotone Equilibrium Problems, Vietnam Journal of Mathematics, 43(2015), 229238,Scopus. 
17  Le Dung Muu, Le Quang Thuy, DC optimization algorithms for solving mimax flow problems, Mathematical Methods of Operations Research, 80 (2014), 8397, SCI(E), Scopus. 
18  Bui Van Dinh, Pham Gia Hung, Le Dung Muu, Bilevel optimization as a regularization approach to pseudomonotone equilibrium problems. Numerical Functional Analysis and Optimization 35 (2014), 539–563, SCI(E), Scopus. 
19  P. N. Anh, Le Dung Muu, A hybrid subgradient algorithm for nonexpansive mappings and equilibrium problems, Optimization Letters 8 (2014), 727–738, SCI(E); Scopus. 
20  Le Dung Muu, Bui Van Dinh, Algorithms for a class of bilevel programs involving pseudomonotone variational inequalities, Acta Mathematica Vietnamica 38 (2013), 529  540. 
21  Le Dung Muu, Pham Gia Hung, On inexact Tikhonov and proximal point regularization methods for solving pseudomonotone equilibrium problems, Vietnam Journal of Mathematics, 40 (2012), 255  274, Scopus. 
22  Le Dung Muu, Q. Tran Dinh, L. T. H. An and P. D. Tao, A New decomposition algorithms for globally solving mathematical programs with affine equilibrium constraints, Acta Mathematica Vietnamica, 37 (2012), 201  217, Scopus. 
23  Le Dung Muu, Tran D. Quoc and Pham N. Anh, Dual extragradient algorithms extendeded to equilibrium problems, Journal of Global Optimization, 52 (2012), 139  159, SCI(E); Scopus. 
24  Tran D. Quoc, Le Dung Muu, Iterative methods for solving equilibrium problems via dual gap function, Computtational Optimization and Applications, 51 (2012), 709  728, SCI(E); Scopus. 
25  Le Dung Muu, Pham N. Anh and J. Kim, An extragradient algorithm for solving bilevel pseudomonotone variational inequalities; Journal of Global Optimization, 52 (2012), pp 627–639, SCI(E); Scopus. 
26  Le Dung Muu, L. Q. Thuy, Smooth optimization algorithms for optimizing over the Pareto efficient set and their application to minmax flow problem, Vietnam Journal of Mathematics 39 (2011), 31  48, Scopus. 
27  Le Dung Muu, P. G. Hung, The Tikhonov regularization extended to equilibrium problems involving pseudomonotone bifunctions, Nonlinear Analyzis: Theory, Methods & Applications, 74 (2011), 6121  6129, SCI(E); Scopus. 
28  Le Dung Muu, Tran Dinh Quoc, A splitting proximal method NashCournot equilibrium models involving nonconvex cost functions, Journal of Nonlinear and Convex Analysis12, 501  519, SCI(E); Scopus. 
29  Le Dung Muu, Bui Van Dinh, On Penalty and gap function methods for bilevel pseudomonotone equilibrium problems, Journal of Applied Mathematics, 2011 (2011), 14p, Scopus. 
30  Le Dung Muu, D. X. Luong, Combining the projection method and the penalty function to solve the variational inequalities with monotone mappings, International Journal of Optimization. Theory Methods and Applications, 2 (2010), 124–137. 
31  Le Dung Muu, T. D. Quoc, One step from DC optimization to DC mixed variational inequalities, Optimization, 59 (2010), 63  76, SCI(E); Scopus. 
32  Le Dung Muu, L. T. H. An, P. D. Tao and N. C. Nam), Methods for optimization over the efficient and weakly efficient sets of an affine fractional vector optimization program, Optimization, 59 (2010), 77  93, SCI(E); Scopus. 
33  Le Dung Muu, T. D. Quoc, Regularization algorithms for solving monotone Ky Fan inequalities with application to a NashCournot equilibria model, J. Optimization Theory and Application, 142 (2009), 185204. 
34  Le Dung Muu, P.N.Anh and JJ. Strodiot, Generalized projection method for nonLipschitz multivalued monotone variational inequalities, Acta Math. Vietnamica, 34 (2009), 6780. 
35  Le Dung Muu, N. V. Hien and N. V. Quy, On NashCournot oligopolistic market equilibrium models with concave cost functions, J. Global Optim. 41 (2008), 351  364. 
36  T. D. Quoc, Le Dung Muu, and N. V. Hien, Extragradient algorithms extended to equilibrium problems, Optimization 57 (2008), 749  776. 
37  Le Dung Muu, Nguyen Van Quy, On branchandbound algorithms for global optimal solutions to mathematical programs with affine equilibrium constraints, Vietnam J. Math. 35 (2007), 523  539. 
38  Pham Ngoc Anh, Le Dung Muu, Contraction mapping fixed point algorithms for solving multivalued mixed variational inequalities, Optimization with multivalued mappings, 231  249, Springer Optim. Appl. 2, Springer, New York, 2006. 
39  Pham Ngoc Anh, Le Dung Muu, Lagrangian duality algorithms for finding a global optimal solution to mathematical programs with affine equilibrium constraints, Nonlinear Dyn. Syst. Theory 6 (2006), N0 3, 225  244. 
40  P. N. Anh, Le Dung Muu, V. H. Nguyen, J. J. Strodiot, Using the Banach contraction principle to implement the proximal point method for multivalued monotone variational inequalities. J. Optim. Theory Appl. 124 (2005), 285–306. 
41  Pham Ngoc Anh, Le Dung Muu, Van Hien Nguyen, JeanJacques Strodiot, On the contraction and nonexpansiveness properties of the marginal mappings in generalized variational inequalities involving cocoercive operators. In: Generalized convexity, generalized monotonicity and applications, 89111, Nonconvex Optim. Appl. 77, Springer, New York, 2005. 
42  Tran Dinh Quoc, Le Dung Muu, Implementable quadratic regularization methods for solving pseudomonotone equilibrium problems. EastWest J. Math. 6 (2004), 101–123. 
43  Pham Ngoc Anh, Le Dung Muu, Coupling the Banach contraction mapping principle and the proximal point algorithm for solving monotone variational inequalities,Acta Math. Vietnam. 29 (2004), 119  133. 
44  H.A. Le Thi, T. Pham Dinh, Le Dung Muu, Simpliciallyconstrained DC optimization over efficient and weakly efficient sets, J. Optim. Theory Appl. 117 (2003), 503  531. 
45  Le Dung Muu, Nguyen Van Quy, A global optimization method for solving convex quadratic bilevel programming problems, J. Global Optim. 26 (2003), 199  219. 
46  Le Dung Muu, Hoang Quang Tuyen, Bilinear programming approach to optimization over the efficient set of a vector affine fractional problem, Acta Math. Vietnam. 27 (2002), 119  139. 
47  Le Dung Muu, Nguyen Van Quy, Methods for finding global optimal solutions to linear programs with equilibrium constraints, Vietnam J. Math. 30 (2002), 189  194. 
48  Nguyen Thi Bach Kim, Le Dung Muu, On the projection of the efficient set and potential applications, Optimization 51 (2002), 401  421. 
49  Nguyen Van Quy, Le Dung Muu, On penalty function method for a class of nonconvex constrained optimization problems. Vietnam J. Math. 29 (2001), 235  256. 
50  Le Dung Muu, Nguyen Van Quy, Methods for finding global optimal solutions to linear programs with equilibrium constraints. Dedicated to Pham Huu Sach on the occasion of his sixtieth birthday. Acta Math. Vietnam. 26 (2001), 333  347. 
51  Le Dung Muu, Werner. Oettli, Optimization over equilibrium sets. In celebration of Prof. Dr. Alfred Gopfert 65th birthday. Optimization 49 (2001), N0 12, 179  189. 
52  Hoang Q. Tuyen, Le Dung Muu, Biconvex programming approach to optimization over the weakly efficient set of a multiple objective affine fractional problem. Oper. Res. Lett. 28 (2001), 81  92. 
53  Le Dung Muu, On the construction of initial polyhedral convex set for optimization problems over the efficient set and bilevel linear programs, Vietnam J. Math. 28 (2000), 177  182. 
54  J. Fülöp, Le Dung Muu, Branchandbound variant of an outcomebased algorithm for optimizing over the efficient set of a bicriteria linear programming problem. J. Optim. Theory Appl. 105 (2000), 37  54. 
55  Le Dung Muu, A convexconcave programming method for optimizing over the efficient set. Acta Math. Vietnam. 25 (2000), 67  85. 
56  Le Thi Hoai An, Pham Dinh Tao, Le Dung Muu, Exact penalty in DC programming. Vietnam J. Math. 27 (1999), 169  178. 
57  Le Thi Hoai An, Pham Dinh Tao, Le Dung Muu, A combined D.C. optimizationellipsoidal branchandbound algorithm for solving nonconvex quadratic programming problems. J. Comb. Optim. 2 (1998), 9  28. 
58  Le Tu Luc, Le Dung Muu, Global optimization approach to optimization over the efficient set. In: the Proceeding of 8th FrenchGerman Conference on Optimization. Springer Verlag, Berlin, 1997, 213  221. 
59  Le Dung Muu, N. V. Tien, A relaxation algorithm for solving mixed integer programming problems. Acta Math. Vietnam. 22 (1997), 367  378. 
60  Le Dung Muu, Le Tu Luc, On equivalence between convex maximization and optimization over the efficient set. Vietnam J. Math. 24 (1996), 439  445. 
61  Le Thi Hoai An, Pham Dinh Tao, Le Dung Muu, Numerical solution for optimization over the efficient set by D. C. optimization algorithm. Operations Research Letters 19 (1996), 117  128. 
62  Nguyen Dinh Dan, Le Dung Muu, Parametric simplex method for optimizing a linear function over the efficient set of a bicriteria linear problem. Acta Math. Vietnam. 21 (1996), 59  67. 
63  Nguyen Anh Tuan, Le Dung Muu, Pham Canh Duong, A decomposition method for finding a global optimal solution to a water distribution network. Acta Math. Vietnam. 21 (1996), 309  333. 
64  Le Dung Muu, Computational aspects of optimization over the efficient set. Vietnam J. Math. 23 (1995), 85  106. 
65  Le Dung Muu, Thai Quynh Phong, Pham Dinh Tao, Decomposition methods for solving a class of nonconvex programming problems dealing with bilinear and quadratic function. Comput. Optim. Appl. 4 (1995), 203  216. 
66  Le Dung Muu, Bui The Tam, S. Schaible, Efficient algorithms for solving certain nonconvex optimization problems dealing with the product of two affine fractional functions. J. Global Optim. 6 (1995), 179  191. 
67  Le Dung Muu, Bui The Tam, Efficient methods for solving certain bilinear programming problems. Acta Math. Vietnam. 19(1994), 97  110. 
68  R. Horst, Le Dung Muu, M. Nast, Branchandbound decomposition approach for solving quasiconvexconcave programs. J. Optim. Theory Appl. 82 (1994), 267  293. 
69  Le Dung Muu, Convexconcave programming as a decomposition approach to global optimization. Acta Math. Vietnam. 18 (1993), 61  77. 
70  W. Oettli, Le Dung Muu, Combimed branchandbound and cutting plane method for solving a certain class of nonconvex optimization problems. J. Global Optim. 3 (1993), 377  391. 
71  Le Dung Muu, An algorithm for solving convex programs with an additional convexconcave constraint. Math. Programming 61 (1993), 75  87. 
72  Le Dung Muu, Bui The Tam, Minimizing the sum of a convex function and the product of two affine functions over a convex set. Optimization 24 (1992), 57  62. 
73  Le Dung Muu, W. Oettli, Convergence of an adaptive penalty method for monotone variational inequalities and convex optimization. Nonlinear Analysis: Theory, Methods and Applications 18 (1992), 1159  1166. 
74  Le Dung Muu, On a Lagrangian penalty function method for convex programs. Appl. Math. Optim. 25 (1992), 1  9. 
75  Le Dung Muu, W. Oettli, An algorithm for indefinite quadratic programming with convex constraints. Operations Resarch Letters 10 (1991), 323  327. 
76  Le Dung Muu, W. Oettli, A method for minimizing a convexconcave function over a convex set. J. Optim. Theory Appl. 70 (1990), 377  384. 
77  Le Dung Muu, W. Oettli, A Lagrangian penalty function method for monotone variational inequalities. Numer. Funct. Anal. Optim. 10 (1989), 1003  1017. 
78  Le Dung Muu, An augmented penalty function method for solving a class of variational inequalities. Soviet Computational Mathematics and Mathematical Physics 12 (1986), 1788  1796. 
79  Le Dung Muu, A convergent algorithm for solving linear programs with an additional reverse convex constraint. Kybernetika 91 (1986), 418  425 (in Russian). 
80  Le Dung Muu, Stability property of a class of variational inequalities. Optimization 15 (1984), 347  351. 
81  Le Dung Muu, Do Ba Khang, Asymtotic regularity and the strong convergence of the proximal point algorithm. Acta Math. Vietnam. 8 (1983), 3  11 (1984). 
82  Hoang Tuy, N. V. Thoai, Le Dung Muu, A modification of Scarf's algorithm allowing restarting, Math. Oper. Stati. Ser. Optim. 9 (1978), 357  372. 
83  Hoang Tuy, N. V. Thoai, Le Dung Muu, Un nouvel algorithme de point fixe. C. R. Acad. Sci. Paris 286 (1978), Ser. A, 783  785. 
1  IMH20170903, Le Dung Muu, Nguyen Van Quy, Algorithms for finding global and local equilibrium points of NashCournot equilibrium models involving concave cost. 
2  IMH20161203, P.T. Hoai, Le Dung Muu, T.N. Thang, Finding the EdgeworthPareto hull and its application to optimization over the efficient set of multiple objective discrete linear programs 
3  IMH2014/02/01, Le Dung Muu, Nguyen Van Quy, On Equilibrium Problems Involving, Strongly Pseudomonotone Bifunctions 