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Abstract. We study equilibrium problems with strongly pseudomonotone bifunc-
tions in real Hilbert spaces. We show the existence of a unique solution. We then
propose a generalized strongly convergent projection method for equilibrium prob-
lems with strongly pseudomonotone bifunctions. The proposed method uses only
one projection without requiring Lipschitz continuity. Application to variational
inequalities is discussed.
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1 Introduction

Throughout the paper, we suppose that H is a real Hilbert space endowed with weak
topology defined by the inner product 〈., .〉 and its reduced norm ‖.‖. Let C ⊆ H
be a nonempty closed convex subset, ∆ be an open convex set in H containing C
and f : ∆ × ∆ → IR be a bifunction satisfying f(x, x) = 0 for every x ∈ C. As
usual we call such a bifunction an equilibrium bifunction. We consider the following
equilibrium problem:

Find x∗ ∈ C : f(x∗, x) ≥ 0 ∀x ∈ C. (EP )

This problem is also often called the Ky Fan inequality due to his contribution to
the subject.

Problem (EP) gives a unified formulation for some problems such as optimiza-
tion problems, saddle point, variational inequalities, fixed point and Nash equilib-
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ria, in the sense that it includes these problems as particular cases (see for instance
[4, 16]).

An important approach for solving Problem (EP) is the subgradient projection
method which can be regarded as an extension of the steepest descent projection
method in smooth optimization. It is well known that when the bifunction f is con-
vex subdifferentiable with respect to the second argument and Lipschitz, strongly
monotone on C, one can choose regularization parameters such that this method
linearly convergent (see e.g. [17]). However when f is monotone, the method may
not be convergent. In recent years, the extragradient (or double projection) method
developed by Korpelevich in [13] has been extended to obtain convergent algorithms
for pseudomonotone equilibrium problems [19]. In the extragradient algorithms it
requires two projections on the the strategy set C, which in some cases is compu-
tational cost. Recently, in [6, 21], inexact subgradient algorithms using only one
projection has been proposed for solving equilibrium problems with paramonotone
equilibrium bifunctions. Other methods such as auxiliary problem principle [18], gap
function [14], the Tikhonov and proximal point regularization methods [9, 10, 12, 15]
are commonly used for equilibrium problems. Existence and solution methods for
equilibrium problems can be found in the interesting survey paper [3].

In this paper we study equilibrium problem (EP) with strongly pseudomonotone
bifunctions. We show the existence of a unique solution of the problem. We then
propose a generalized projection method for strongly pseudomonotone equilibrium
problems. Three main features of the proposed method are:

• It uses only one projection without requiring Lischitz continuity allowing
strong convergence;

• It allows that moving directions can be chosen by such a general way taking
both the cost bifunction and the feasible set into account;

• It does not require that the bifunction is subdifferentiable with respect to the
second argument everywhere.

2 Solution Existence

As usual, by PC we denote the projection operator onto the closed convex set C
with the norm ‖.‖, that is

PC(x) ∈ C : ‖x− PC(x)‖ ≤ ‖x− y‖ ∀y ∈ C.

The following well known results on the projection operator will be used in the
sequel.

Lemma 2.1 ([1]) Suppose that C is a nonempty closed convex set in H. Then

(i) PC(x) is singleton and well defined for every x;
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(ii) π = PC(x) if and only if 〈x− π, y − π〉 ≤ 0,∀y ∈ C;

(iii) ‖PC(x)− PC(y)‖2 ≤ ‖x− y‖2 − ‖PC(x)− x + y − PC(y)‖2, ∀x, y ∈ C.

We recall some well known definitions on monotonicity (see e.g. [2, 4]).

Definition 2.1 A bifunction φ : C × C → IR is said to be

(a) strongly monotone on C with modulus β > 0 (shortly β-strongly monotone)
on C if

φ(x, y) + φ(y, x) ≤ −β‖x− y‖2, ∀x, y ∈ C;

(b) monotone on C,if

〈φ(x, y) + φ(y, x) ≤ 0, ∀x, y ∈ C;

(c) strongly pseudomonotone on C with modulus β > 0 (shortly β-strongly
monotone), if

φ(x, y) ≥ 0 =⇒ φ(y, x) ≤ −β‖x− y‖2 ∀x, y ∈ C;

(d) pseudomonotone on C, if

φ(x, y) ≥ 0 =⇒ φ(y, x) ≤ 0 ∀x, y ∈ C.

From the definitions it follows that (a) ⇒ (b) ⇒ (d) and (a) ⇒ (c) ⇒ (d), but
there is non relationship between (b) and (c). Furthermore, if f is strongly monotone
(resp. pseudomonotone) with modulus β > 0, then it is strongly monotone (resp.
pseudomonotone) with modulus β′ for every 0 ≤ β′ ≤ β.

Here is an example for strongly pseudomonotone bifunction. Let

f(x, y) := (R− ‖x‖)g(x, y), Br := {x :∈ H : ‖x‖ ≤ r},

where g is a strongly monotone on Br with modulus β > 0, for instance g(x, y) =
〈x, y−x〉, and R > r > 0. We see that f is strongly pseudomonotone on Br. Indeed,
suppose that f(x, y) ≥ 0, Since x ∈ Br, we have g(x, y) ≥ 0. Then, by β- strong
monotonicity of g on Br, g(y, x) ≤ −β‖x− y‖2 for every x, y ∈ Cr. From definition
of f and y ∈ Br, it follows that

f(y, x) = (R− ‖y‖)g(y, x) ≤ −β(R− ‖y‖)‖x− y‖2 ≤ −β(R− r)‖x− y‖2.

Thus f is strongly pseudomonotone on Br with modulus β(R− r).

Lemma 2.1 ([4]) Let φ : C × C → IR ∪ {∞} be an equilibrium bifunction such
that φ(., y) is upper semicontinuous for each y ∈ C and φ(x, .) is quasiconvex for
each x ∈ C. Suppose that at least one of the following assumptions holds:

(i) C is compact;

(ii) There exists a nonempty compact set W such that for every x ∈ C \W there
is y ∈ C ∩W with φ(x, y) < 0. Then the equilibrium problem (EP) has a solution.
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In what follows we need the following blanket assumptions on the bifunction f :

(A1) For each x ∈ C, y ∈ C, the function f(x, .) is properly convex (not neces-
sarily subdifferentiable everywhere) and the function f(., y) is upper semicontinuous
on C;

(A2) f is β-strongly pseudomonotone on C.

It is well known that if f is strongly monotone on C, then under Assumptions
(A1), Problem (EP) has a unique solution. The following lemma extends this result
to (EP) with strongly pseudomonotone bifunctions.

Proposition 2.1 Suppose that f is strongly pseudomonotone on C, then under
Assumptions (A1), (A2), Problem (EP) has a unique solution.

Proof. By Lemma 2.1 it is sufficiency to prove the following coercivity condi-
tion:

∃ closed ball B : (∀x ∈ C \B, ∃y ∈ C ∩B : f(x, y) < 0). (C0)

Indeed, otherwise, for every closed ball Br around 0 with radius r, there xr ∈ C \Br

such that f(x, y) ≥ 0 ∀y ∈ C ∩Br.

Fixed r0 > 0, then for every r > r0, there exists xr ∈ C\Br such that f(xr, y0) ≥
0 with y0 ∈ C ∩Br0 . Thus, since f is β- pseudomonotone, we have

f(y0, xr) + β‖xr − y0‖2 ≤ 0 ∀r. (2.1)

On the other hand, since f(y0, .) is properly convex, there exists x0 ∈ C such
that ∂2(f(y0, x0) 6= ∅, where ∂2f(y0, x0) stands for the subdifferential of the convex
function f(y0, .) at x0. Take w∗ ∈ ∂2f(y0, x0), by definition of subgradient one has

〈w∗, x− x0〉+ f(y0, x0) ≤ f(y0, x) ∀x.

With x = xr it yields

f(y0, xr) + β‖xr − y0‖2 ≥ f(y0, x0) + 〈w∗, xr − x0〉+ β‖xr − y0‖2

≥ f(y0, x0)− ‖w∗‖‖xr − x0‖+ β‖xr − y0‖2.

Letting r → ∞, since ‖xr‖ → ∞, we obtain f(y0, xr) + β‖xr − y0‖2 → ∞ which
contradicts to ( 2.1). Thus the coercivity condition (C0) must hold true, Then by
virtue of Lemma 2.1, Problem (EP) admits a solution. The uniqueness of the solu-
tion is immediate from the the strong pseudomonotonicity of f . 2

We recall [8] that an operator F : C → H is said to be strongly pseudomonotone
on C with modulus β > 0, shortly β-strongly monotone, if

〈F (x), y − x〉 ≥ 0 ⇒ 〈F (y), y − x〉 ≥ β‖y − x‖2 ∀x, y ∈ C.
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In order to apply the above proposition to the variational inequality problem

Find x∗ ∈ C : 〈F (x∗), y − x∗〉 ≥ 0 ∀y ∈ C, (V I)

where F is a strongly pseudomonotne operator on C, we define the bifunction f by
taking

f(x, y) := 〈F (x), y − x〉. (2.2)

It is obvious that x∗ is a solution of (VI) if and only if it is a solution of Problem
(EP) with f defined by ( 2.2). Moreover, it is easy to see that F is β-strongly
pseudomonotone on C if and only if so is f . The following existence result, which is
an immediate consequence of Proposition 2.1, seems has not been appeared in the
literature.

Corollary 2.1 Suppose that F is upper semicontinuous and strongly pseudomono-
tone on C. Then variational inequality problem (VI) has a unique solution.

3 A Generalized Projection Method for Strongly

Pseudomonotone EPs

For ε ≥ 0, we call a point xε ∈ C an ε-solution to Problem (EP), if f(xε, y) ≥ −ε
for every y ∈ C. The following well-known lemma will be used in the proof of the
convergence theorem below.

Lemma 3.1 Suppose that {αk}∞0 is an infinite sequence of positive numbers satis-
fying

αk+1 ≤ αk + ξk ∀k,

with
∑∞

k=0 ξk < ∞. Then the sequence {αk} is convergent.

ALGORITHM

Step 1 (Choosing a starting point and step size) Set x1 ∈ C, and choose a
tolerance ε > 0 and a sequence of positive numbers {σk} such that

∞∑
k=1

σk = ∞,
∞∑

k=1

σ2
k < +∞. (3.1)

Step 2 (Finding a moving direction) Find gk ∈ H such that

f(xk, y) + 〈gk, xk − y〉 ≥ −σk ∀y ∈ C, (3.2)

a) If gk = 0 and σk ≤ ε, terminate: xk is an ε-solution.

b) Otherwise, execute Step 3.

Step 3 (Projection) Take xk+1 := PC(xk − σkg
k) and go back to Step 2 with k

is replaced by k + 1.
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Theorem 3.1 Suppose that Assumptions (A1) and (A2) are satisfied. It holds that

(i) If the algorithm terminates at Step 2, then xk is an ε-solution and

‖xk+1 − x∗‖2 ≤ (1− 2βσk)‖xk − x∗‖2 + 2σ2
k + σ2

k‖gk‖2 ∀k; (3.3)

(ii) If the algorithm does not terminate and {gk} is bounded, then the sequence
{xk} strongly converges to the unique solution x∗ of (EP).

Proof. (i) If the algorithm terminates at Step 2, then gk = 0 and σk ≤ ε. Then, by
( 3.2), f(xk, y) ≥ −σk ≥ −ε for every y ∈ C. Hence, xk is an ε- solution.

Since xk+1 = PC(xk − σkg
k), one has

‖xk+1 − x∗‖2 ≤ ‖xk − σkg
k − x∗‖2

= ‖xk − x∗‖2 − 2σk〈gk, xk − x∗〉+ σ2
k‖gk‖2.

(3.4)

Applying ( 3.2) with y = x∗ we obtain

f(xk, x∗) + 〈gk, xk − x∗〉 ≥ −σk,

which implies
−〈gk, xk − x∗〉 ≤ f(xk, x∗) + σk. (3.5)

Then it follows from ( 3.4) that

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 + 2σk

(
f(xk, x∗) + σk

)
+ σ2

k‖gk‖2. (3.6)

Since x∗ is the solution, f(x∗, xk) ≥ 0, it follows from β-strong pseudomonotonicity
of f that

f(xk, x∗) ≤ −β‖xk − x∗‖2.

Combining the last inequality with ( 3.6) we obtain

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − 2βσk‖xk − x∗‖2 + 2σ2
k + σ2

k‖gk‖2

= (1− 2βσk)‖xk − x∗‖2 + 2σ2
k + σ2

k‖gk‖2.
(3.7)

(ii) Suppose now that the algorithm does not terminate and that the sequence
{gk} is bounded. Then there is a real number c such that ‖gk‖ ≤ c < ∞ for every
k. Then ( 3.7) can be rewritten as

‖xk+1 − x∗‖2 ≤ (1− 2βσk)‖xk − x∗‖2 + c0σ
2
k

= ‖xk − x∗‖2 − λk‖xk − x∗‖2 + c0σ
2
k,

(3.8)
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where λk := 2βσk, c0 := 2+c. Since
∑∞

k=1 σ2
k < ∞, it follows from Lemma 3.1, that

the sequence {‖xk − x∗‖2} is convergent. Summing up the inequality ( 3.8) from 1
to k + 1 we obtain

‖xk+1 − x∗‖2 ≤ ‖x1 − x∗‖2 −
k∑

j=2

λj‖xj − x∗‖2 + c0

k∑
j=2

σ2
j ,

which implies

‖xk+1 − x∗‖2 +
k∑

j=2

λj‖xj − x∗‖2 ≤ ‖x1 − x∗‖2 + c0

k∑
j=2

σ2
j . (3.9)

Note that the sequence {‖xj−x∗‖2} is convergent, that
∑∞

j=1 λj = 2β
∑∞

j=1 σj = ∞
and that

∑∞
k=0 σ2

k < ∞ we can deduce from ( 3.9) that ‖xk − x∗‖2 → 0 as k →∞.
2

Remark 3.1 (i) A subproblem in this algorithm is to find a moving direction gk 6=
0 satisfying (3.2). If gk is a σk-subgradient of the convex function f(xk, .) at xk,
then gk satisfies ( 3.2). Indeed, by definition of σk-subgradient we have

f(xk, y) + 〈gk, xk − y〉 ≥ f(xk, xk)− σk = −σk ∀y ∈ C.

Hence ( 3.2) is satisfied. In addition, if f is finite and continuous on ∆×∆, then
{gk} is bounded [10] whenever σk → 0. Note that since f(xk, .) is convex, for every
σk > 0, a σk-subgradient of the function f(xk, .) does always exist at every point in
domf(xk, .), but it may fail to exist if σk = 0.

(ii) For variational inequality (VI) with f(x, y) defined by ( 2.2), the formula
( 3.2) takes the form

〈F (xk), y − xk) + 〈gk, xk − y〉 ≥ −σk ∀y ∈ C, (3.10)

which means that gk − F (xk) ∈ Nσk
C (xk), where Nσk

C (xk) denotes the (outward) σk-
normal cone of C at xk, that is

Nσk
C (xk) := {wk : 〈wk, y − xk〉 ≤ σk ∀y ∈ C}.

In an usual case, when C is given by C := {x ∈ H : g(x) ≤ 0} with g being a
subdifferentiable continuous convex function, one can take gk = F (xk) when g(xk) <
0, and gk may be any vector such that gk − F (xk) ∈ ∂g(xk) when g(xk) = 0. Since

NC(xk) = {0} if g(xk) < 0 and NC(xk) = ∂g(xk) if g(xk) = 0,

in both cases gk − F (xk) ∈ NC(xk) ⊂ Nσk
C (xk) for any σk > 0.
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(ii) The direction gk defined such a way so that gk − F (xk) ∈ Nσk
C (xk) takes

not only the cost operator F into account, but also the constrained set C. This is
helpful in certain cases, for example, for avoiding the projection onto C. Indeed it
may happen that −F (xk) 6∈ C, but gk − F (xk)) ∈ C.

(iii) For implement the algorithm, it suggests one to take σk := εσ′k, where σ′k
satisfies ( 3.1).

4 A Numerical Example

We consider an oligopolistic equilibrium model of the electricity markets (see e.g.
[5, 20]). In this model, there are nc companies, each company i may possess Ii

generating units. Let x denote the the vector whose entry xi stands for the power
generating by unit i. Following [5] we suppose that the price p is a decreasing affine
function of σ with σ =

∑ng

i=1 xi where ng is the number of all generating units, that
is

p(x) = a0 − 2
ng∑
i=1

xi = p(σ),

where a0 > 0 is a constant (in general is large). Then the profit made by company
i is given by

fi(x) = p(σ)
∑
j∈Ii

xj −
∑
i∈Ii

cj(xj).

where cj(xj) is the cost for generating xj. Unlike [5] we do not suppose that the
cost cj(xj) is differentiable, but

cj(xj) := max{c0
j(xj), c

1
j(xj)}

with

c0
j(xj) :=

α0
j

2
x2

j + β0
j xj + γ0

j , c1
j(xj) := α1

jxj +
β1

j

β1
j + 1

γ
−1/β1

j

j (xj)
(β1

j +1)/β1
j ,

where αk
j , β

k
j , γk

j (k = 0, 1) are given parameters.

Let xmin
j and xmax

j be the lower and upper bounds for the power generating by
the unit j. Then the strategy set of the model takes the form

C := {x = (x1, ..., xng)T : xmin
j ≤ xj ≤ xmax

j ∀j}.

Define the matrices A, and B by taking

A := 2
nc∑
i=1

(1− qi
j)(q

i)T , B := 2
nc∑
i=1

qi(qi)T , (4.1)
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where qi := (qi
1, ..., q

i
nq) with

qi
j :=

{
1, if j ∈ Ii,

= 0, otherwise,
(4.2)

a := −a0

nc∑
i=1

qi, c(x) :=
ng∑
j=1

cj(xj). (4.3)

Then the equilibrium being solved can be formulated as

x ∈ C : f(x, y); = ((A+
3

2
B)x+

1

2
By + a)T (y−x)+ c(y)− c(x) ≥ 0 ∀y ∈ C. (EP )

Note that f(x, y) + f(y, x) = −(y − x)T A(y − x)T . Thus, since A is not positive
semidefinite, f may not be monotone on C. However if we replace f by f1 defined
as

f1(x, y) := f(x, y)− 1

2
(y − x)T B(y − x),

then f1 is strongly pseudomonotone on C. In fact, one has

f1(x, y) + f1(y, x) = −(y − x)T (A + B)(y − x)

Thus, if f1(x, y) ≥ 0, then

f1(y, x) ≤ −(y − x)T (A + B)(y − x) ≤ −λ‖y − x‖2

for some λ > 0 The following lemma is an immediate consequence of the auxiliary
principle (see. e.g. [17, 18]).

Lemma 4.1 The problem

Find x∗ ∈ C : f1(x
∗, y) ≥ 0 ∀y ∈ C

is equivalent to the one

Find x∗ ∈ C : f1(x
∗, y) +

1

2
(y − x∗)T B(y − x∗) ≥ 0 ∀y ∈ C (EP1)

in the sense that their solution sets coincide.

In virtue of this lemma we can apply the proposed algorithm to the model by solving
the equilibrium problem (EP1), which in turns, is just Problem (EP).

We test the proposed algorithm for this problem with corresponds to the first
model in [5] where three companies (nc = 3) are considered with a0 := 387 and the
parameters are given in the following tables:

9



Com. Gen. xg
min xg

max xc
min xc

max

1 1 0 80 0 80

2 2 0 80 0 130

2 3 0 50 0 130

3 4 0 55 0 125

3 5 0 30 0 125

3 6 0 40 0 125

Table 1: The lower and upper bounds for the power generation and companies.

Gen. α0
j β0

j γ0
j α1

j β1
j γ1

j

1 0.04 2.00 0.00 2.00 1.00 25.00

2 0.04 1.75 0.00 1.75 1.00 28.57

3 0.12 1.00 0.00 1.00 1.00 8.00

4 0.02 3.25 0.00 3.25 1.00 86.21

5 0.05 3.00 0.00 3.00 1.00 20.00

6 0.05 3.00 0.00 3.00 1.00 20.00

Table 2: The parameters of the generating unit cost functions.

We implement Algorithm 1 in Matlab R2008a running on a Laptop with Intel(R)
Core(TM) i3CPU M330 2.13GHz with 2GB Ram. We choose ε = 103 and σk := ε

k
.

The computational results are reported in Table 3 with the starting point x1 = 0.

x1 x2 x3 x4 x5 x6 Cpu(s)

46.543 31.947 15.019 20.989 12.581 12.612 19.991

Table 3: The power made by three companies
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