******************* Researchers

Phung Ho Hai


Full Professor, Doctor of Science

Department of Geometry and Topology
Research interests:

Tensor categories, Tannaka duality, Quantum groups,Hopf algebras, Fundamental groupschemes


Address
Office: Building A6, Room 406
Tel: +84 24 37563474
Email: phung AT math.ac.vn

Education and academic degrees:

  • 1987: Graduate from High School for gifted students at Hanoi University
  • 1992: Graduated from Moscow State University (Title Magister of Mathematics and Physics)
  • 1996: Ph. D. in Mathematics at Munich Unversity
  • 2005: Habilitation at the University Duisburg-Essen
  • 2006: Associate Professor
  • 2012: Full Professor


Positions:

 

PUBLICATIONS

List  of publications in MathSciNet

 

List of recent publications
1Võ Quốc Bảo, Phung Ho Hai, Dao Van Thinh, Cohomology of the differential fundamental group of algebraic curves, Bulletin des Sciences Mathématiques, Volume 203, August 2025, 103646, https://doi.org/10.1016/j.bulsci.2025.103646, (SCI-E, Scopus).
2Phung Ho Hai, Nguyen Dang Hop, João Pedro dos Santos , Fiber criteria for flatness and homomorphisms of flat affine group schemes, Journal of Pure and Applied Algebra, Volume 229, Issue 6, June 2025, 107949, (SCI-E, Scopus).
3Phung Ho Hai, João Pedro dos Santos, Phạm Thanh Tâm, Algebraic theory of formal regular-singular connections with parameters, Rendiconti del Seminario Matematico della Università di Padova, Volume 152 (2024) pages 171–228, (SCI-E, Scopus).
4Phung Ho Hai, João Pedro dos Santos, Phạm Thanh Tâm, Dao Van Thinh, Prolongation of regular-singular connections on punctured affine line over a Henselian ring, Communications in Algebra, Volume 52, 2024 - Issue 8, Pages 3194-3208, (SCI-E, Scopus).
5Indranil Biswas, Phung Ho Hai, Joao Pedro dos Santos, Connections on trivial vector bundles over projective schemes Comptes Rendus. Mathématique, Volume 362 (2024), pp. 309-325, (SCI-E, Scopus).
6Phung Ho Hai, João Pedro dos Santos, Regular-singular connections on relative complex schemes, Annali della Scuola Normale Superiore di Pisa, Classe di Scienze, 2023: VOL. XXIV, ISSUE 3, (SCI-E, Scopus).
7Phung Ho Hai, João Pedro dos Santos, Finite torsors on projective schemes defined over a discrete valuation ring, Algebraic Geometry, 10, (2023), page 1-40, (SCI-E, Scopus).
8Indranil Biswas, Phung Ho Hai, João Pedro Dos Santos, On the fundamental group schemes of certain quotient varieties, Tohoku Mathematical Journal, 73(2021), 565-595, (SCI-E, Scopus). Corrected version: see link (https://arxiv.org/abs/1809.06755).
9Phung Ho Hai, João Pedro dos Santos, On the Structure of Affine Flat Group Schemes Over Discrete Valuation Rings, II , International Mathematics Research Notices, 12 (2021), Pages 9375–9424, (SCI(-E), Scopus).
10Nguyên Luong Thái Bình, Nguyên Thi Phuong Dung, Phung Ho Hai, Jacobi-Trudi Type Formula for Character of Irreducible Representations of gl(m|1), Acta Mathematica Vietnamica, 44 (2019), pp 603–615, Scopus.
11Phung Ho Hai, João Pedro P. dos Santos, The action of the etale fundamental group scheme on the connected component of the essentially finite one, Mathematische Nachrichten, 291 (2018),1733–1742, SCI(-E); Scopus.
12Nguyen Dai Duong, Phung Ho Hai, João Pedro P. Dos Santos, On the structure of affine flat group schemes over discrete valuation rings, Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, XVIII (2018), 977-1032, SCI(-E); Scopus.
13Nguyen Dai Duong, Phung Ho Hai, Tannakian duality over Dedekind rings and applications, Mathematische Zeitschrift, 288 (2018),1103–1142, SCI(-E); Scopus.
14Nguyen Dai Duong, Phung Ho Hai, Nguyen Huy Hung, On the flatness and the projectivity over Hopf subalgebras of Hopf algebras over Dedekind rings, Journal of Algebra, 478 (2017), 237–260,SCI(-E); Scopus.
15Phung Ho Hai, On an injectivity lemma in the proof of Tannakian duality, Journal of Algebra and Its Applications, 15 (2016),SCI(-E); Scopus.
16Phung Ho Hai, Gauss-Manin stratification and stratified fundamental group schemes, Annales de l'institut Fourier, 63 (2013), 2267-2285, doi: 10.5802/aif.2829, SCI(-E); Scopus.
17Nguyen Thi Phuong Dung, Phung Ho Hai, Nguyen Huy Hung, Construction of irreducible representations of the quantum super group $GL_q(3\mid 1)$, Acta Mathematica Vietnamica 36 (2011), 215 -- 229, Scopus.
18Phung Ho Hai, H. Esnault, Two small remarks on Nori fundamental group scheme, In: Advanced Studies in Pure Mathematics, 60 (2010), 237 -- 243.
19Phung Ho Hai, B. Kriegk and M. Lorenz, $N$-homogeneous superalgebras, J. Noncommut. Geom. 2 (2008), 1 - 51, preprint arXiv:0704.1888.
20H. Esnault, Phung Ho Hai, Packets in Grothendieck's section conjecture, Adv. Math. 218 (2008), 395 - 416.
21H. Esnault, Phung Ho Hai, X. Sun, On Nori's fundamental group scheme. In: Geometry and dynamics of groups and spaces, 377 - 398, Progr. Math., 265, Birkhọuser, Basel, 2008.preprint arXiv:math/0605645.
22Phung Ho Hai, Tannaka-Krein duality for Hopf algebroids, Israel J. Math. 167 (2008), 193 - 225, preprint arXiv:math/0206113.
23Phung Ho Hai, H. Esnault, The fundamental groupoid scheme and applications, Annales de l’Institut Fourier, 58 (2008), 2381-2412.
24Phung Ho Hai, Martin Lorenz, Koszul algebras and the quantum MacMahon master theorem, Bull. Lond. Math. Soc. 39 (2007), 667 - 676, preprint arXiv:math/0603169.
25Hélène Esnault, Phung Ho Hai, The Gauss-Manin connection and Tannaka duality, Int. Math. Res. Not. 2006, Art. ID 93978, 35 pp.
26Phung Ho Hai, On the representation categories of matrix quantum groups of type A, Vietnam J. Math. 33 (2005), 357 - 367.
27Phung Ho Hai, The homological determinant of quantum groups of type $A$. Proc. Amer. Math. Soc. 133 (2005), 1897 - 1905 (electronic), preprint arXiv:math/0305115.
28Nguyen Thi Phuong Dung, Phung Ho Hai, Irreducible representations of quantum linear groups of type A1|0, J. Algebra 282 (2004), 809 - 830.
29Phung Ho Hai, Nguyen Phuong Dung, On the Poincare series of quadratic algebras associated to Hecke symmetries, Int. Math. Res. Not. 2003, N0 40, 2193 - 2203.
30Phung Ho Hai, On a theorem of Deligne on characterization of Tannakian categories. In: Arithmetic fundamental groups and noncommutative algebra (Berkeley, CA, 1999), 517 - 531, Proc. Sympos. Pure Math., 70, Amer. Math. Soc., Providence, RI, 2002.
31Phung Ho Hai, An embedding theorem for abelian monoidal categories, Compositio Math. 132 (2002), 27 - 48, preprint arXiv:math/0004160.  Corrigendum: ``An embedding theorem for abelian monoidal categories'' [Compositio Math. 132 (2002), N0 1, 27 - 48]. Compos. Math. 144 (2008), 1349 - 1350
32Phung Ho Hai, Characters of quantum groups of type $A_n$, Comm. Algebra 30 (2002), 1085 - 1117, preprint arXiv:math/9807045.
33Phung Ho Hai, Realizations of quantum hom-spaces, invariant theory, and quantum determinantal ideals, J. Algebra 248 (2002), 50 - 84.
34Phung Ho Hai, The integral on quantum supergroups of type AR|S, Asian J. Math. 5 (2001), 751 - 769.
35Phung Ho Hai, Splitting comodules over Hopf algebras and application to representation theory of quantum groups of type A0|0. J. Algebra 245 (2001), 20 - 41.
36Phung Ho Hai, On matrix quantum groups of type A_n. Internat. J. Math. 11 (2000), 1115 - 1146.
37Phung Ho Hai, Hecke symmetries. Commutative algebra, homological algebra and representation theory (Catania/Genoa/Rome, 1998). J. Pure Appl. Algebra 152 (2000), 109 - 121.
38Phung Ho Hai, On structure of the quantum supergroups GLq(m|n). J. Algebra 211 (1999), 363 - 383.
39Phung Ho Hai, Poincaré series of quantum spaces associated to Hecke operators. Acta Math. Vietnam. 24 (1999), 235 - 246.
40Phung Ho Hai, Central bialgebras in braided categories and coquasitriangular structures. J. Pure Appl. Algebra 140 (1999), 229 - 250.
41Phung Ho Hai, Koszul property and Poincaré series of matrix bialgebra of type A_n. J. Algebra 192 (1997),734 - 748.
42Phung Ho Hai, Poincaré series of quantum matrix bialgebras determined by pairs of quantum spaces. Comm. Algebra 23 (1995), 879 - 890.
Preprints
1IMH20250701, Võ Quốc Bảo, Phung Ho Hai, Dao Van Thinh, Cohomology of the stratified fundamental group of curves
2IMH20250402, Phung Ho Hai, João Pedro Dos Santos, Dao Van Thinh, Singular schemes and infinitesimal non-commutative witt vectors
3IMH20230402, Trần Phan Quốc Bảo, Võ Quốc Bảo, Phung Ho Hai, Tannakian duality and Gauss-Manin connections for a family of curves