Ha Huy Vui


Associate Professor, Doctor of Science

Cộng tác viên
Research interests:

Global Milnor fibrations, Positivstellensatz and applications in polynomial optimization


Address
Office: Building A5, Room 104
Tel: +84 (0)4 37563474 Ext 104
Email: hhvui AT math.ac.vn

PUBLICATIONS

 

List of publications in MathSciNet


List of recent publications
1Ha Huy Vui, Pham Tien Son, Genericity in polynomial optimization. With a foreword by Jean Bernard Lasserre. Series on Optimization and its Applications, 3. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2017. xix+240 pp. ISBN: 978-1-78634-221-8.
2Dinh Si Tiep, Ha Huy Vui, Pham Tien Son, Hölder-Type Global Error Bounds for Non-degenerate Polynomial Systems, Acta Mathematica Vietnamica, 42 (2017), 563–585.
3Ho Minh Toan, Ha Huy Vui, Positive polynomials on nondegenerate basic semi-algebraic sets, Advances in Geometry, 16 (2016), 497-510.
4Dang Van Doat, Ha Huy Vui, Pham Tien Son, Well-Posedness in Unconstrained Polynomial Optimization Problems, SIAM Journal on Optimization 26(2016), 1411–1428.
5Ha Huy Vui, Trần Gia Lộc, On the volume and the number of lattice points of some semialgebraic sets, International Journal of Mathematics, 26 (2015),13p.
6Ha Huy Vui, Ngai, H. V.; Phạm, T. S., A global smooth version of the classical Łojasiewicz inequality. J. Math. Anal. Appl. 421 (2015), 1559–1572.
7Dinh Si Tiep, Ha Huy Vui, Pham Tien Son, A Frank–Wolfe type theorem for nondegenerate polynomial programs, Mathematical Programming, 147(2014), 519-538.
8Dinh Si Tiep, Ha Huy Vui, Tiến Sơn Phạm, Nguyễn Thị Tha̓o, Global Łojasiewicz-type inequality for non-degenerate polynomial maps, J. Math. Anal. Appl. 410 (2014), 541–560.
9Ha Huy Vui, Global Holderian error bound for nondegenerate polynomials, SIAM J. Optimization, 23 (2013), 917 - 933.
10Dinh Si Tiep, Ha Huy Vui, Nguyen Thi Thao, Lojasiewicz inequality for polynomial functions on non-compact domains,  International Journal of Mathematics, 23 (2012), 28p.
11Ha Huy Vui, N. T. Thao, Atypical values at infinity of polynomial and rational functions on an alfebraic surface in $\mathbb R^n$Acta Math. Vietnamica  36 (2011), 537 - 553.
12Ha Huy Vui, N. H. Duc, On the stability of gradient polynomial systems at infinity,  Nonlinear Analysis: Theory, Methods & Applications  74 (2011), 257 - 262.
13Nguyen Tat Thang, Ha Huy Vui, On the topology of polynomial mappings from $\mathbb C^n$ to $\mathbb C^n-1$,  International Journal of Mathematics  22 (2011), 435 - 448.
14Ha Huy Vui, Nguyen Hong Duc, Lojasiewicz inequality at infinity for polynomials in two real variables, Math. Z., 266 (2010), 243 -- 264.
15Ha Huy Vui, P. T. Son, Reprensentations of positive polynomials and optimization on noncompact semialgebraic sets, SIAM J. Optim., 20 (2010), 3082 -- 3103.
16Ha Huy Vui, Nguyen Hong Duc, Łojasiewicz exponent of the gradient near the fiber, Ann. Polon. Math., 96 (2009), 197-207.
17Ha Huy Vui, Nguyen Hong Duc, A formula for the Łojasiewicz exponent at infinity in the real plane via real approximations, Hokkaido Math. J., 38 (2009), 417-425.
18Ha Huy Vui, Pham Tien Son, Solving polynomial optimization problems via the truncated tangency variety and sums of square, Journal of Pure and Applied Algebra, 213 (2009), 2167-2176.
19Ha Huy Vui, Pham Tien Son, Critical values of singularities at infinity of complex polynomials, Vietnam J. Math. 36 (2008), 1 - 38.
20Ha Huy Vui, Nguyen Hong Duc, On the Łojasiewicz exponent near the fibre of polynomial mappings, Ann. Polon. Math. 94 (2008),  43 - 52.
21Ha Huy Vui, Pham Tien Son, Global optimization of polynomials using the truncated tangency variety and sums of squares, SIAM J. Optim. 19 (2008), N0 2, 941 - 951.
22Ha Huy Vui, Pham Tien Son, On the Łojasiewicz exponent at infinity of real polynomials, Ann. Polon. Math. 94 (2008),  197 - 208.
23Ha Huy Vui, Nguyen Tat Thang, On the topology of polynomial functions on algebraic surfaces in $\Bbb C^n$. In: Singularities II, 61 - 67, Contemp. Math., 475, Amer. Math. Soc., Providence, RI, 2008.
24Ha Huy Vui, Pham Tien Son, Minimizing polynomial functions. Acta Math. Vietnam. 32 (2007), 71 - 82.
25Ha Huy Vui, Pham Tien Son, An estimation of the number of bifurcation values for real polynomials, Acta Math. Vietnam. 32 (2007), 141 - 153.
26Ha Huy Vui, Bifurcation set of the global Milnor fibration. In: Polynomial automorphisms and related topics, 137 - 158, Publishing House for Science and Technology, Hanoi, 2007.
27Ha Huy Vui, Pham Tien Son, On local Pareto optima of real analytic mappings, Acta Math. Vietnam. 30 (2005), 191 - 202.
28Ha Huy Vui, Degree of C0-sufficiency of an analytic germ with respect to a principal ideal, Vietnam J. Math. 32 (2004), 13 - 19.
29Pham Tien Son, Ha Huy Vui, Newton-Puiseux approximation and Lojasiewicz exponents. Kodai Math. J. 26 (2003), 1 - 15.
30Ha Huy Vui, Milnor number of positive polynomials. Vietnam J. Math. 30 (2002), 413 - 416.
31Ha Huy Vui, Infimum of polynomials and singularity at infinity. In: From local to global optimization (Rimforsa, 1997), 187 - 204, Nonconvex Optim. Appl. 53, Kluwer Acad. Publ., Dordrecht, 2001.
32Ha Huy Vui, Pham Tien Son , On the topology of families of affine plane curves. Ann. Polonici Math. LXXI.2 (1999), 129 - 139.
33Ha Huy Vui, Pham Tien Son, Remark on the equisingularity of families of affine plane curves. Ann. Polonici Math. LXVIII.3 (1998), 273 - 280.
34Ha Huy Vui, Pham Tien Son, Invariance of the global monodromies in families of polynomials of two complex variables. Acta Math. Vietnam. 22 (1997), 515 - 526.
35Ha Huy Vui, Alexandru Zaharia, Families of polynomials with total Milnor number constant. Math. Ann. 304 (1996), 481 - 488.
36P. Cassou-Nogues, Ha Huy Vui, Theoreme de Kuiper-Kuo-Bochnak-Lojasiewicz a l'infini. Ann. Sci. Toulouse, Serie 6, Vol 5, Fascicule 3 (1996), 387 - 406.
37Ha Huy Vui, P. Cassou-Nogues, Sur le nombre de Lojasiewicz a l infini d un polynome. Annales Polonici Mathematici, LXII.1 (1995), 23 - 44.
38Ha Huy Vui, La formule de Picard-Lefschetz affine. C. R. Acad. Sci. Paris, Serie 1, 321 (1995), 747 - 750.
39Nguyen Viet Dung, Ha Huy Vui, The fundamental group of complex hyperplanes arrangements. Acta Math. Vietnam. 20 (1995), 31 - 41.
40Ha Huy Vui, A version at infinity of the Kuiper- Kuo theorem. Acta Math. Vietnam. 19 (1994), 3 - 12.
41Ha Huy Vui, A formula for Lojasiewicz numbers and a new characterization of the irregularity at infinity of algebraic plane curves. Vietnam J. Math. 19 (1991), 72 - 82.
42Ha Huy Vui, Sur l irregularite du diagramme splice pour l entrelacement a l infini des courbes planes. C. R. Acad. Sci. Paris, Serie 1, 313 (1991), 277 - 280.
43Ha Huy Vui, Nombres de Lojasiewicz et singularites a l infini des polynomes de deux variables complexes. C. R. Acad. Sci. Paris, Serie1 311 (1990), 429 - 432.
44Ha Huy Vui, Sur la fibration globale des polynomes de deux variables complexes. C. R. Acad. Sci. Paris, Serie 1, 309 (1989), 231 - 234.
45Ha Huy Vui, Nguyen Le Anh, Le comportement geometrique a l infini des polynomes de deux variables complexes. C. R. Acad. Sci. Paris, Serie 1, 309 (1989), 183 - 186.
46Ha Huy Vui, Le Dung Trang, Sur la topologie des polynomes complexes. Acta Math. Vietnam. 9 (1984), 21 - 32.
47Ha Huy Vui, Minimum de Pareto locaux. C. R. Acad. Sci. Paris, Serie 1, 294 (1982),329 - 331.
48Ha Huy Vui, Sur les points doptimum de Pareto local à determination finie ou infinie. C. R. Acad. Sci. Paris Serie A, 290 (1980), 685 - 688.
49Ha Huy Vui, Nguyen Tu Cuong, Nguyễn Sĩ Minh, Nguyễn Hữu Đức, A rostkax beskonechnoi opredelenosti. Acta Math. Vietmam. 3 (1978), 43 - 50.
50Ha Huy Vui, Nguyen Tu Cuong, N. H. Duc, N. S. Minh, Sur les germes de functions infiniment determines. C. R. Acad. Sc. Paris 285 (1977), 1045 - 1048.
51Ha Huy Vui, P. N. Knhiajev, A weak convergence of operators. Isvestia Acad. Nauk BSSR (1975), 23 - 27.
Preprints
1IMH20170501, Ha Huy Vui, Computation of the Lojasiewicz exponent for a germ of a smooth function in two variables, to appear in Studia Math.
2IMH20170402, Ha Huy Vui, Dang Van Doat, On the Global Lojasiewicz inequality for polynomial functions
3IMH20151001, Ha Huy Vui, Ho Minh Toan, Positive Polynomials on nondegenerate basic semi-algebraic sets.