Ha Huy Khoai
Emeritus Professor
Cộng tác viên
|
Address
Office: Building A5, Room 115
Tel: +84 4 37563474/115
Email: hhkhoai AT math.ac.vn
Born in Ha Tinh, Vietnam in 1946
Education and academic degrees
- 1967: Bachelor, Hanoi University
- 1978: PhD, Steklov Institute of Mathematics, Moscow, Russia
- 1984: Doctor of Science, Steklov Institute of Mathematics, Moscow, Russia
- 1983: Associate Professor
- 1991: Full Professor
Positions
- 2000-2001: Chairman of the Scientific Council, Institute of Mathematics, VAST
- 2001-2007: Director, Institute of Mathematics, VAST
- 2009-2014: Member, State Council for Professor Title; Chairman of the Council for Professor Title in Mathematics
Research areas
- Number theory
- Complex analysis
- History of Mathematics
PUBLICATIONS
List of publications in MathSciNet
1 | Ha Huy Khoai, Vu Hoai An and Le Quang Ninh, Uniqueness Theorems for Holomorphic Curves with Hypersurfaces of Fermat–Waring Type, Complex Analysis and Operator Theory, 8 (2014), 1747-1759, SCI(-E), Scopus. |
2 | Ha Huy Khoai, On contemporary Mathematics in Vietnam. Springer Proceedings in Mathematics & Statistics, 39 (2013), 375-383. |
3 | Ha Huy Khoai, Vu Hoai An, Value-sharing problem for $p$ - adic meromorphic functions and their difference operators and difference polynomials, Ukrainian Mathematical Journal, 64 (2012), 147 -- 164, SCI(-E); Scopus. |
4 | Ha Huy Khoai, Vu Hoai An and Nguyen Xuan Lai, Value sharing problem and uniqueness for $p$-adic meromorphic functions, Annales Univ. Sci. Budapest., Sect. Comp., 38 (2012), 57 -- 70, SCI(-E); Scopus. |
5 | Ha Huy Khoai, Vu Hoai An, Value distribution problem for p-adic meromorphic functions and their derivatives, Annales de la Faculte des Sciences de Toulouse, T. 20 (2011), 137-151. |
6 | Ha Huy Khoai, On complex analysis in Vietnam, Acta Math. Vietnamica, 35 (2010), 1 -- 6, Scopus. |
7 | Ha Huy Khoai, On the contemporary mathematics in Vietnam, Science and Culture Review, 6 (2009), 83-92. |
8 | Ha Huy Khoai, Ta Thi Hoai An, A survey on uniqueness polynomials and unique range sets. In: Some topics on value distribution and differentiability in complex and p-adic analysis.,143-163; Math. Monogr. Ser., 11, Sci. Press Beijing, 20008. |
9 | Ta Thi Hoai An, Ha Huy Khoai, Uniqueness polynomials and unique range sets. Some topics on value distribution and differentiability in complex and p-adic analysis, 148–163, Math. Monogr. Ser., 11, Sci. Press Beijing, Beijing, 2008. |
10 | Ha Huy Khoai, p-adic Fatou-Bieberbach maps, Inter. J. Math. 16 (2005), 303 - 306. |
11 | Ha Huy Khoai, C. C. Yang, On the fuctional equation P(f) = Q(g), In: Value distribution theory. Kluwer Acad. Publ. Dordrecht 2004, 201 - 207. |
12 | Ha Huy Khoai, L. T. H. Thu, p-adic interpolation and applications. In: Finite or infinite dimensional complex analysis and applications, 143 - 151. Adv. Complex Anal. Appl. 2, Kluwer Acad. Publ., Dordrecht, 2004. |
13 | Pham Huy Dien, Ha Huy Khoai, Mã hoá thông tin. NXB Đại học quốc gia, Hà Nội, 2004, 300 trang (in Vietnamese). |
14 | Ha Huy Khoai, P. H. Điển, Số học thuật toán: cơ sở lý thuyết và tính toán thực hành (in Vietnamese), NXB Đại học Quốc gia Hà Nội, 2003. |
15 | Ha Huy Khoai, Vu Hoai An, Value distribution for p-adic hypersurfaces, Taiwanese J. Math. 7 (2003), 51 - 67. |
16 | Ha Huy Khoai, Pham Huy Dien, Số học thuật toán. NXB Đại học quốc gia, Hà Nội, 2003, 238 trang (in Vietnamese). |
17 | Pham Huy Dien, Ha Huy Khoai, Mã hoá thông tin điện tử và vấn đề triển khai trong thực tiễn Việt Nam. Tạp chí ứng dụng Toán học 1 (2003), 5 - 22. |
18 | Ha Huy Khoai, Ta Thi Hoai An, Uniqueness problem with truncated multiplicities for meromorphic functions on a non-Archimedean field, Southeast Asian Bull. Math. 27 (2003), 477 - 486. |
19 | Ha Huy Khoai, A survey on the p-adic Nevanlinna theory and recent articles, Dedicated to the memory of Le Van Thiem (Hanoi, 1998), Acta Math. Vietnam. 27 (2002), 321 - 332. |
20 | Ha Huy Khoai, Ta Thi Hoai An, On uniqueness polynomials and bi-URs for $p$-adic meromorphic functions, J. Number Theory 87 (2001), N0 2, 211 - 221. |
21 | Ha Huy Khoai, Hyperbolic surfaces in P3(C), Proc. Amer. Math. Soc. 125 (1997), 3527 - 3532. |
22 | Ha Huy Khoai, p-adic hyperbolic surfaces. Acta Math. Vietnam. 22 (1997), 501-514. |
23 | Ha Huy Khoai, Borel curves in projective hypersurfaces. Publ. Center Funct. Complex Anal. 1 (1997), 79 - 86. |
24 | Ha Huy Khoai, An algebraic characterization of complex hyperbolic spaces. Vietnam J. Math. 25 (1997), 175 - 178. |
25 | Ha Huy Khoai, Introduction to algorithmic arithmetic (in Vietnamese) – Nhập môn số học thuật toán. NXB Khoa học và Kĩ thuật 1997. |
26 | Ha Huy Khoai, Recent work on hyperbolic spaces. Vietnam J. Math. 25 (1997), 1 - 13. |
27 | Ha Huy Khoai, Mai Van Tu, p-adic Nevanlinna-Cartan theorem. Internat. J. Math 6 (1995), 710 - 731. |
28 | Ha Huy Khoai, Heights for p-adic holomorphic functions and applications. In: Proceedings of the International Symposium on Holomorphic mappings, Diophantine Geometry and Related topics, RIMS Lecture Note 819 (1993), 96 - 105. |
29 | Ha Huy Khoai, Nguyen Van Khue, Finite codimensional subalgebras of Stein algebras and semiglobally Stein algebras. Trans. AMS (1992), 503 - 509. |
30 | Ha Huy Khoai, Heights for p-adic meromorphic functions and value distribution theory. Vietnam. J. Math 20:1 (1992), 14 - 29. |
31 | Ha Huy Khoai, Sur les series L associées aux formes modulaires. Bull. Soc. math. France 120 (1992), 1 - 13. |
32 | Ha Huy Khoai, La hauteur d'une suite de points dans Cpk et l'interpolation des fonctions holomorphes de plusieurs variables. C. R. A. Sc. Paris 312 (1991), 903 - 905. |
33 | Ha Huy Khoai, La hauteur des fonctions holomorphes p-adiques de plusieurs variables. C. R. A. Sc. Paris 312 (1991), 751 - 754. |
34 | Ha Huy Khoai, My Vinh Quang, p-adic Nevanlinna theory. Lecture Notes in Math. 1351 (1988), 138 - 152. |
35 | Ha Huy Khoai, Sur le théorème de Morera p-adique. Univ. Paris 7, Groupe d'Etude d'Analyse Ultramétrique, 15-ème année, 1987-1988, 29 - 34. |
36 | Ha Huy Khoai, Sur la théorie de Nevanlinna p-adique. Univ. Paris 7, Groupe d'Etude d'Analyse Ultramétrique, 15-ème année, 1987-1988, 35 - 39. |
37 | Ha Huy Khoai, p-adic analysis and arithmetic functions. Proc. of the 3-rd Congress of Math. Hanoi, 1985 (in Vietnamese). |
38 | Hoang Tuy, Ha Huy Khoai, N. V. Khue and N. X. My, Introduction to algebra and topology. two volumes (in Vietnamese) – Nhập môn Đại số và Tôpô. NXB Bộ Đại học1984. |
39 | Ha Huy Khoai, p-adic analysis and p-adic L-functions associated to modular forms. Dr. Sc. Thesis, Steklov Math. Inst., Moscow 1983 (in Russian). |
40 | Ha Huy Khoai, p-adic Interpolation and continuation of p-adic functions. Lecture Notes in Math. 1013 (1983), 252 - 265. |
41 | Ha Huy Khoai, On p-adic meromorphic functions. Duke Math. J. 50 (1983), 695 - 711. |
42 | Ha Huy Khoai, p-adic interpolation and the Mellin-Mazur transform. Acta Math. Vietnam 5 (1980), 77 - 99 . |
43 | Ha Huy Khoai, On p-adic L-functions associated to elliptic curves. Mat. Zametki 26 (1979), (in Russian). AMS translation: Math. Notes 26 (1980), 629-634. |
44 | Ha Huy Khoai, On p-adic interpolation. Mat. Zametki, 26:1 (1979). AMS translation Math. Notes 26 (1980), 541 - 549 (in Russian). |
45 | Ha Huy Khoai, Sur une conjecture de Mazur et Swinnerton-Dyer. C. R. A. Sc. Paris 289 (1979), A483 - A485. |
46 | Ha Huy Khoai, p-adic interpolation and the Mellin-Mazur transform. Ph. D. Thesis, Steklov Math. Inst., Moscow, 1978 (in Russian). |
47 | Ha Huy Khoai, Nguyen Van Khue, Holomorphic mappings on Banach analytic manifolds. Func. Analyz i ego Priloz. 4:4 (1973), (in Russian). |
48 | Ha Huy Khoai, Finitely extension property of holomorphic functions on analytic sets. Vietnam. Math. J. 1 (1973) (in Vietnamese). |
49 | Ha Huy Khoai, Finiteness for complex analytic spaces. Vietnam. Math. J. 1 (1973), (in Vietnamse). |
50 | Ha Huy Khoai, N. V. Khue , Holomorphic mappings on Banach analytic manifolds. Acta Scientiarum Vietnam. 1971, (in Russian). |
Highlights
28/10/24, Conference: School and Workshop “Selected topics in Arithmetic Algebraic Geometry” |
01/12/24, Conference: Hội thảo quốc tế về Đại số giao hoán và mối liên quan với Tổ hợp |