The Breuil-Mézard conjecture

Người báo cáo: Bao Le Hung (Northwestern University)

Time: 9:30 -- 11:00, August 07th, 2024

Venue: Room 612, A6

Abstract: Breuil-Mézard conjectured that the Hilbert-Samuel multiplicities of deformation rings of rank n representations of the Galois group of a p-adic field K with p-adic Hodge theoretic conditions are controlled by certain decomposition numbers of the group GL_n(O_K). More recently, this phenomena has been geometrically interpreted as the (conjectural) existence of highly constrained cycles in the Emerton-Gee stack, which is a way to interpolate between different Galois deformation rings. I will give an introduction to the circle of ideas surrounding this, and describe some recent approach to construct these cycles and prove their internal structure. This is based on joint work with T. Feng and Zhongyipan Lin

  Hoạt động tuần
Hội thảo sắp diễn ra
Xuất bản mới
Nguyễn Khoa Sơn, Nguyễn Thị Hồng, Lê Văn Ngọc, Stability conditions for a class of nonlinear timevarying switched systems with delays and sectortype nonlinearities, International Journal of Systems Science, Volume 57(2), (2025), 441-461 (SCI(-E); Scopus) .
Trần Văn Thắng, Lê Xuân Thanh, Đỗ Thị Thùy, A monotonic optimization approach to mixed variational inequality problems, Optimization Letters, Volume 19, pages 1779–1800, (2025) (SCI-E, Scopus) .
Nguyễn Hữu Sáu, Piyapong Niamsup, Vũ Ngọc Phát, Linear Programming Approach to Constrained Stabilization of Positive Differential-Difference Equations With Unbounded Delay, Optimal Control Applications and Methods, 2025; 46:2581--2594 (SCI-E, Scopus) .