Polar Varieties: History and Introduction

Người báo cáo: Jean-Paul Brasselet (CNRS and Aix-Marseille University)


Time: 9:30 - 10h30, 7th September

Venue: Room 507, A6, Institute of Mathematics

Abstract: The history of Polar Varieties starts with Blaise Pascal (1623-1662) and his work on conics. Then Jean-Victor Poncelet (1788-1867) introduced the notion of duality by poles and  polars, or polar transformation. Examples of polar transformation in Euclidean space R^3 gives the idea of polar variety. The generalisation by Francesco Severi (1879-1961) and John Arthur Todd (1908-1994) led to the relationship between polar varieties and characteristic classes of smooth manifolds.

More recently Lê Dung Trang and Bernard Teissier define polar varieties for singular varieties and the relation with the characteristic classes of singular varieties, as
defined by Marie-Hélène Schwartz and Robert MacPherson.

  Hoạt động tuần
Hội thảo sắp diễn ra
Xuất bản mới
Vo Si Trong Long, Nguyễn Mậu Nam, Jacob Sharkansky, Nguyễn Đông Yên, Qualitative properties of k-center problems, Journal of Optimization Theory and Applications Vol. 207 (2025), Paper 1, 23 pages (SCI-E, Scopus) .
Nguyễn Khoa Sơn, Nguyễn Thị Hồng, Lê Văn Ngọc, Stability conditions for a class of nonlinear timevarying switched systems with delays and sectortype nonlinearities, International Journal of Systems Science, Volume 57(2), (2025), 441-461 (SCI(-E); Scopus) .
Trần Văn Thắng, Lê Xuân Thanh, Đỗ Thị Thùy, A monotonic optimization approach to mixed variational inequality problems, Optimization Letters, Volume 19, pages 1779–1800, (2025) (SCI-E, Scopus) .