Partition Identities, Presburger Constructibility and Satake inversion

Người báo cáo: Jorge Enrique Cely García


Time: 9:00 - 10:00, 8th June

Venue: Room 507, A6, Institute of Mathematics

Abstract: The Presburger constructible functions are those elements in the ring of constructible motivic functions (in the sense of Cluckers-Loeser) that are built from data given by the Presburger language in Z (the value group sort) and the functions and constants involving the formal symbol L. We show some results around the Presburger constructibility of certain partition functions of positive integers. Using results of Hahn et al. we show that the explicit Satake inversion that they obtain using a combinatorial approach from partition identities, can be also obtained in the ring of constructible motivic functions. We formulate questions about possible generalizations. This is a work in progress

  Hoạt động tuần
Hội thảo sắp diễn ra
Xuất bản mới
Vo Si Trong Long, Nguyễn Mậu Nam, Jacob Sharkansky, Nguyễn Đông Yên, Qualitative properties of k-center problems, Journal of Optimization Theory and Applications Vol. 207 (2025), Paper 1, 23 pages (SCI-E, Scopus) .
Nguyễn Khoa Sơn, Nguyễn Thị Hồng, Lê Văn Ngọc, Stability conditions for a class of nonlinear timevarying switched systems with delays and sectortype nonlinearities, International Journal of Systems Science, Volume 57(2), (2025), 441-461 (SCI(-E); Scopus) .
Trần Văn Thắng, Lê Xuân Thanh, Đỗ Thị Thùy, A monotonic optimization approach to mixed variational inequality problems, Optimization Letters, Volume 19, pages 1779–1800, (2025) (SCI-E, Scopus) .