Grothendieck-Serre and Purity of torsors

Người báo cáo: Ning Guo

Thời gian: 16h30 - 18h00, thứ 5 ngày 19 tháng 10.

Hình thức: Offline tại phòng 612 A6 và online qua google meet, cụ thể https://meet.google.com/yep-kbzk-eao?pli=1&authuser=1

Tóm tắt: Torsors (or principal bundles) are generalization of vector bundles and they are basic objects of geometry and physics. A long-standing conjecture proposed by Grothendieck and Serre predicts that over a regular local ring, every generically trivial torsor under a reductive group scheme is trivial. The state of the art is the equi-characteristic case proved by Panin and Fedorov-Panin, the quasi-split unramified case by Cesnavicius, and the unramified case when the group scheme is constant by Guo-Liu and Guo-Panin-Stavrova. In this talk, I will introduce the Grothendieck-Serre conjecture, discuss several geometric methods (including presentation theorems and analysis of torsors over affine line), and its relation with purity.

  Hoạt động tuần
Hội thảo sắp diễn ra
Xuất bản mới
Vo Si Trong Long, Nguyễn Mậu Nam, Jacob Sharkansky, Nguyễn Đông Yên, Qualitative properties of k-center problems, Journal of Optimization Theory and Applications Vol. 207 (2025), Paper 1, 23 pages (SCI-E, Scopus) .
Nguyễn Khoa Sơn, Nguyễn Thị Hồng, Lê Văn Ngọc, Stability conditions for a class of nonlinear timevarying switched systems with delays and sectortype nonlinearities, International Journal of Systems Science, Volume 57(2), (2025), 441-461 (SCI(-E); Scopus) .
Trần Văn Thắng, Lê Xuân Thanh, Đỗ Thị Thùy, A monotonic optimization approach to mixed variational inequality problems, Optimization Letters, Volume 19, pages 1779–1800, (2025) (SCI-E, Scopus) .