Monodromy of analytic functions

Người báo cáo: Lê Dũng Tráng (Aix-Marseilles University, France)


Thời gian: 09h30, thứ năm, ngày 23/3/2023.

Địa điểm: Phòng 507, nhà A6.

Tóm tắt: There is famous theorem of N. A'Campo which says that if germ of complex analytic function $fin {mathcal O}_{X,x}$ belongs to the square of the maximal ideal ${mathfrak M}_{X,x}$, the Lefschetz number of the monodromy of $f$ at the point $x$ is $0$. We shall show that it means that the geometric monodromy of $f$ at $x$ has no fixed point. We shall introduce all the notions necessary to understand this result.

  Hoạt động tuần
Hội thảo sắp diễn ra
Xuất bản mới
Vo Si Trong Long, Nguyễn Mậu Nam, Jacob Sharkansky, Nguyễn Đông Yên, Qualitative properties of k-center problems, Journal of Optimization Theory and Applications Vol. 207 (2025), Paper 1, 23 pages (SCI-E, Scopus) .
Nguyễn Khoa Sơn, Nguyễn Thị Hồng, Lê Văn Ngọc, Stability conditions for a class of nonlinear timevarying switched systems with delays and sectortype nonlinearities, International Journal of Systems Science, Volume 57(2), (2025), 441-461 (SCI(-E); Scopus) .
Trần Văn Thắng, Lê Xuân Thanh, Đỗ Thị Thùy, A monotonic optimization approach to mixed variational inequality problems, Optimization Letters, Volume 19, pages 1779–1800, (2025) (SCI-E, Scopus) .