A fundamental exact sequence for the differential fundamental groupoid

Người báo cáo: Võ Quốc Bảo

 

Thời gian: 16h30 thứ 5 ngày 9/3/2023

Địa điểm: Phòng 612 Nhà A6, Viện Toán học

Link online: https://meet.google.com/yep-kbzk-eao?pli=1&authuser=4

Tóm tắt: The differential fundamental groupoid of a scheme over fields, introduced by H.Esnault and P.H. Hai, is a generalization of the well-known étale fundamental group. This groupoid controls integrable connections in the framework of N.Katz and leads to an interesting behavior of Gauss-Manin connections and cohomology of fundamental group schemes. We prove the existence of a fundamental exact sequence over a Dedekind domain for the differential fundamental groupoid of a projective smooth scheme with geometrically connected fibers. This is my joint work with Prof. Phung Ho Hai and Tran Phan Quoc Bao.

  Hoạt động tuần
Hội thảo sắp diễn ra
Xuất bản mới
Nguyễn Huyền Mười, Vũ Ngọc Phát, New design of robust $H_\infty$ controllers for descriptor discrete time-varying delay equations with bounded disturbances, Transactions of the Institute of Measurement and Control, 48(2026), 87-97 (SCI(-E); Scopus) .
Lê Xuân Thanh, Lê Dũng Mưu, Nguyễn Văn Quý, A Dual Approach Based Extragradient-Type Method for Solving Quasi-Equilibrium Problems, Journal of Optimization Theory and Applications, Volume 208, article number 59, (2026) .
Vũ Thị Hướng, Ida Litzel, Thorsten Koch, Similarity-based fuzzy clustering scientific articles: Potentials and challenges from mathematical and computational perspectives, Journal of Nonlinear and Variational Analysis 10, 381-401 (2026). (SCI-E, Scopus) .