Monodromy of analytic functions

Người báo cáo: Lê Dũng Tráng (Aix-Marseilles University, France)


Thời gian: 09h30, thứ năm, ngày 23/3/2023.

Địa điểm: Phòng 507, nhà A6.

Tóm tắt: There is famous theorem of N. A'Campo which says that if germ of complex analytic function $fin {mathcal O}_{X,x}$ belongs to the square of the maximal ideal ${mathfrak M}_{X,x}$, the Lefschetz number of the monodromy of $f$ at the point $x$ is $0$. We shall show that it means that the geometric monodromy of $f$ at $x$ has no fixed point. We shall introduce all the notions necessary to understand this result.

  Hoạt động tuần
Hội thảo sắp diễn ra
Xuất bản mới
Nguyễn Huyền Mười, Vũ Ngọc Phát, New design of robust $H_\infty$ controllers for descriptor discrete time-varying delay equations with bounded disturbances, Transactions of the Institute of Measurement and Control, 48(2026), 87-97 (SCI(-E); Scopus) .
Lê Xuân Thanh, Lê Dũng Mưu, Nguyễn Văn Quý, A Dual Approach Based Extragradient-Type Method for Solving Quasi-Equilibrium Problems, Journal of Optimization Theory and Applications, Volume 208, article number 59, (2026) .
Vũ Thị Hướng, Ida Litzel, Thorsten Koch, Similarity-based fuzzy clustering scientific articles: Potentials and challenges from mathematical and computational perspectives, Journal of Nonlinear and Variational Analysis 10, 381-401 (2026). (SCI-E, Scopus) .