Hurwitz trees and abelian coverings
Báo cáo viên: Đặng Quốc Huy

Thời gian: 9h Thứ 4 ngày 4/11/2020

Địa điểm: Phòng 612, Nhà A6, Viện Toán học, 18 Hoàng Quốc Việt, Cầu Giấy, Hà Nội

Tóm tắt: In this talk, we introduce the Hurwitz tree's notion for abelian coverings of a rigid disc. It is a combinatorial-differential object endowed with the cover's essential degeneration data measured by (Kazuya) Kato's refined Swan conductor. We then discuss how to use these trees to study the moduli space that parametrizes Galois covers and their invariants (e.g., p-rank, a-number, Newton polygon). For instance, the technique was used to show that the moduli space of Artin-Schreier covers (Z/p-covers of the projective line in characteristic p) of fixed genus g is connected when g is large.

Trở lại

09/12/22, Hội nghị, hội thảo:
Winter School on Mathematical Models and Dynamical Systems
16/12/22, Bài giảng viện:
Arational blowdown surgery on 4-manifolds
19/12/22, Hội nghị, hội thảo:
Một số vấn đề trong hình học và tô pô
08/08/23, Hội nghị, hội thảo:
Đại hội Toán học Việt Nam lần thứ X

Công bố khoa học mới