Regularity of symbolic powers of monomial ideals
Báo cáo viên: Trần Nam Trung (Viện Toán)

Thời gian: 9h00, Thứ 4, Ngày 7/11/2018,
Địa điểm: Phòng 611-612 Tầng 6 Nhà A6
Tóm tắt: Let $I$ be a monomial ideal in a polynomial ring over a field. Let $I^{(n)}$ be the $n$-th symbolic power of $I$. We prove that the regularity $reg I^{(n)}$ and the maximal generating degree $d(I^{(n)})$ of $I^{(n)}$ are asymptotically quasi-linear functions of $n$ with a constant leading coefficient which are the same for both functions. For the cover ideal $J(G)$ of a graph $G$, we prove that $d(J(G)^{(n)})$ and $reg (J(G)^{(n)})$ are quasi-linear of period $2$ for $n$ large.

This a a joint work with Le Xuan Dung, Truong Thi Hien and Nguyen Dang Hop.

Trở lại

Công bố khoa học mới