HOẠT ĐỘNG TRONG TUẦN

A note on pseudoconvex hypersurfaces of infinite type in $\mathbb C^n$
Báo cáo viên: Ninh Văn Thu (Đại học Khoa học Tự nhiên - ĐHQG Hà Nội)

Thời gian: 9h00, Thứ 4, Ngày 23/5/2018
Địa điểm: Phòng 611-612, tầng 6 nhà A6, Viện Toán học
Tóm tắt: The purpose of this talk is twofold. The first one is to prove that there exists a smooth pseudoconvex real hypersurface germ $(M,p)$ of D'Angelo infinite type in $mathbb C^{n+1}$ such that it does not admit any (singular) holomorphic curve in $mathbb C^{n+1}$ tangent to $M$ at $p$ to infinite order. The second one is to show that there exists a smooth pseudoconvex real hypersurface germ $(widetilde M, p)$ of Bloom-Graham infinite type in $mathbb C^{n+1}$ that does not admit any (singular) holomorphic curve in $mathbb C^{n+1}$ tangent to $M$ at $p$ to infinite order. This is a joint work with Professor John Erik Fornaess.

Trở lại