HOẠT ĐỘNG TRONG TUẦN

Complex monodromy, Newton polyhedron and asymptotics of the number of eigenvalues of Schrodinger operator with a polynomial potential
Người báo cáo: Nguyễn Thị Thảo

Thời gian: 9:30 Thứ Ba ngày 22/11/2016
Địa điểm: Phòng 104 nhà A5, Viện Toán học 18 Hoàng Quốc Việt
Tóm tắt: Let L be a Schrodinger operator with purely discrete spectrum. Assume that the potential V of L is a polynomial in n real variables. Let N(r) denote the number of eigenvalues >1, with the eigenvalues of the homological monodromy of the global Milnor fibration of V, then we compute the leading term in the asymptotic expansion of N(r) for the following cases: -n>2 and V is non-degenerate -n=2 and V is weekly degenerate (w.r.t the Newton polyhedron of V).
This is a joint work with Ha Huy Vui.

Trở lại

Công bố khoa học mới