Người báo cáo: Đoàn Thái Sơn
Thời gian: 14h, thứ 5, 29/10/2015 Địa điểm: Phòng 201, Nhà A5 - Viện Toán học, 18 Hoàng Quốc Việt, Cầu Giấy Hà Nội
Tóm tắt: Our aim in this talk is to investigate the openness and denseness of the set of integrally separated systems in the space of bounded linear random differential equations equipped with the $L^infty $ -metric. We show that in the general case, the set of integrally separated systems is open and dense. An exception is the case when the base space is isomorphic to the ergodic rotation flow of the unit circle, in which the set of integrally separated systems is open but not generic |